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Abstract 
This systematic literature review synthesizes evidence on artificial intelligence models used to predict 
foodborne pathogen risk within public health systems, focusing on how data, methods, and validation 
practices translate into actionable prevention. We searched major multidisciplinary and domain databases 
through September 2025 and screened studies against predefined eligibility criteria aligned with PRISMA. 
A total of 105 peer-reviewed studies met inclusion, spanning outbreak detection, nowcasting and multi-
horizon forecasting, spatiotemporal risk mapping, inspection prioritization, and whole-genome sequencing–
enabled source attribution. Across the corpus, tree-based ensembles consistently excelled for tabular, 
establishment-level risk scoring, while recurrent and attention-based sequence models were strongest for 
delay-aware forecasting. Multi-stream fusion of inspections, laboratory and genomic data, syndromic 
telemetry, environmental drivers, complaint signals, and supply-chain metadata yielded measurable gains 
in discrimination, stability, and top-k precision compared with single-stream models. Studies that 
implemented temporal or geographic external validation, probability calibration, and decision-utility 
analyses reported smaller but durable improvements that translated into operational benefits such as more 
critical violations found per fixed inspection budget and earlier detection of emergent clusters at controlled 
false-alarm rates. Methodological themes associated with credible deployment included leakage-safe temporal 
and spatial validation, transparent feature engineering, calibrated probabilistic outputs with proper scoring, 
interpretability to support regulatory scrutiny, drift monitoring with scheduled recalibration, and subgroup 
assessments to manage equity trade-offs. The review consolidates a decision-oriented framework that maps 
prediction targets to data and model families, highlights reproducible performance patterns, and outlines 
governance steps that convert statistical accuracy into sustained public health impact. 
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INTRODUCTION 
Foodborne disease refers to illness arising from ingestion of food or water contaminated with 
pathogenic microorganisms (bacteria, viruses, parasites) or their toxins, and it remains a leading cause 
of preventable morbidity and mortality worldwide. Its epidemiology is complex, reflecting interactions 
among pathogen ecology, food production systems, environmental conditions, and human behaviors 
from farm practices and cold-chain integrity to consumer food handling. Burden estimates illustrate 
the public health stakes: analyses anchored in robust surveillance and modeling show millions of cases 
and significant mortality annually, with nontrivial long-term sequelae and economic costs borne by 
individuals, health systems, and the food industry (Chenar & Deng, 2021; Effland, Lawson, et al., 2018). 
In addition to well-recognized agents such as Salmonella enterica, Campylobacter, Listeria 
monocytogenes, norovirus, and pathogenic Escherichia coli, risk is shaped by climate-sensitive 
pathogens (e.g., Vibrio spp.) and by the globalized, just-in-time nature of food supply chains that can 
amplify contamination events and complicate traceback. Public-health agencies thus face a dual 
challenge: detect signals of elevated pathogen risk early enough to prevent illness, and target scarce 
inspection and control resources where they will yield the greatest risk reduction. These priorities 
motivate methods that can learn from high-dimensional, heterogeneous data streams healthcare, 
laboratory, environmental, supply-chain, consumer-generated, and genomic to forecast pathogen risk 
at actionable spatial and temporal scales (Chenar & Deng, 2021; Munck et al., 2020; Panacek & et al., 
2023; Wang et al., 2021). 
 

Figure 1: Framework of Foodborne Disease Risks and AI Applications 
 

 
Artificial intelligence (AI) particularly machine learning (ML) methods such as gradient-boosted trees, 
random forests, regularized generalized linear models, kernel methods, and modern probabilistic or 
hierarchical learners has been increasingly applied to food safety surveillance because these models 
handle nonlinearity, interactions, and mixed-type features while scaling to large datasets. In public 
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health contexts, AI has supported three complementary aims: (1) risk forecasting (predicting 
when/where risk of pathogen presence or illness is likely to rise); (2) source attribution (inferring the 
food/animal or geographic sources of human infections); and (3) operational prioritization (ranking 
establishments or supply-chain links for inspection or intervention). Foundational studies show that 
ML can improve outbreak signal detection from case data and metadata (Effland, DeFelice, et al., 2018; 
Harrison & et al., 2014), forecast environment-linked hazards such as Vibrio infections (Collins et al., 
2024; Jackson et al., 2016), and triage inspections by predicting noncompliance from geospatial and 
sociodemographic features (Collins et al., 2024; Oldroyd et al., 2021; Rose & et al., 2025; Zhang et al., 
2021). At the same time, whole-genome sequencing (WGS) integrated with ML has transformed source 
attribution linking clinical isolates to food sources or production environments thus directly informing 
targeted controls and recalls (Ekanayake & et al., 2022; Gmeiner et al., 2024; Li & et al., 2017). Taken 
together, these advances underscore the feasibility and utility of AI-based models for proactive, risk-
based disease prevention within public health systems. 
 

Figure 2 : Applications of Artificial Intelligence in Foodborne Pathogen Surveillance 

 
 
International significance is underscored by the diversity of settings and data regimes in which AI has 
added value. In high-income countries with mature surveillance, ML augments routine workflows: city 
health departments have used text classification over consumer reviews to discover otherwise 
unreported illness clusters and guide inspections, improving yield over complaint-based methods 
(Gmeiner et al., 2025; Kirk et al., 2015). At national and regional levels, risk-prediction models that 
incorporate population, environment, and business attributes help prioritize food outlet inspections 
where resources are constrained (Gmeiner et al., 2025; Kirk et al., 2015). In pathogen- and context-
specific domains, hybrid physical-statistical and ML frameworks have predicted norovirus risk in 
shellfish harvesting areas by fusing environmental and hydrological drivers (Gmeiner et al., 2025; 
Turner & et al., 2024; Weller et al., 2021). Climate-responsive predictive models are increasingly salient: 
species within Vibrio show strong temperature and salinity dependencies, and recent studies have used 
ML to capture multi-factor drivers and forecast infection hazards in coastal regions, illustrating how 
environmental surveillance can feed forward into public-health advisories (Gmeiner et al., 2024; 
Havelaar & et al., 2015). Globally, WGS+ML source-attribution pipelines now support rapid, 
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geographically aware inference for Salmonella and Listeria, strengthening the ability to pinpoint 
sources and deploy risk management measures across borders (Lupolova et al., 2019). 
A central reason AI methods fit this domain is the abundance of heterogeneous predictors and their 
complex, nonlinear relationships to pathogen risk. Public health systems can leverage syndromic and 
case surveillance data, laboratory results, environmental measurements (temperature, precipitation, 
salinity), satellite/remote sensing features, transportation and trade flows, food business 
characteristics, and consumer-generated signals. ML models can integrate these signals to deliver risk 
scores or probabilities aligned to decision horizons e.g., daily to weekly forecasts for environmental 
pathogens, or monthly risk maps to plan inspection calendars. Studies demonstrate that gradient 
boosting and random forests improve discriminatory performance for identifying establishments at 
higher risk of noncompliance compared with simpler baselines (Mikhailov et al., 2023; Scallan et al., 
2011). In event detection, ML over case metadata and exposure features has improved classification of 
outbreak-linked cases and identified confounders important for cluster recognition. For environmental 
drivers, ensembles and feature-attribution methods help disentangle correlated oceanographic and 
climatic variables shaping Vibrio hazards, producing interpretable predictors for risk communication 
(Chenar & Deng, 2021; Lupolova et al., 2017). In the WGS space, random forests and other classifiers 
trained on SNPs, core-genome MLST, or kmers can attribute human isolates to source reservoirs or 
geographies, often outperforming classic population-genetic approaches, and doing so in near real-
time for routine surveillance (Castelli et al., 2023). 
Crucial for public-health legitimacy is that AI-based forecasts translate into actionable, risk-based 
control. Evidence from municipal deployments shows that algorithm-guided inspection targeting 
yields more violations detected per visit than status quo approaches an operational efficiency gain that 
matters when environmental health teams face backlogs and staffing constraints (Chenar & Deng, 2018; 
Oldroyd et al., 2021). In environmental health protection, forecasting models for Vibrio spp. provide 
lead time for advisories, harvesting closures, and public messaging when conditions indicate elevated 
hazard (Campbell et al., 2025; Chenar & Deng, 2018). In national and international surveillance, WGS-
ML source attribution and geographic assignment narrow epidemiologic hypotheses, accelerate recalls, 
and focus traceback investigations, directly preventing further cases (Chenar & Deng, 2018; Rose & et 
al., 2025). Methodologically, these wins depend on careful data engineering (handling class imbalance, 
leakage, nonstationarity), appropriate validation (temporal/spatial splits), and interpretability tools 
that support regulatory transparency. Many published studies explicitly evaluate trade-offs between 
model complexity and interpretability to meet governance needs in official control programs, an 
important consideration for acceptance by inspectors, risk managers, and the public (Gmeiner et al., 
2024). 
The genomics-plus-ML trajectory deserves emphasis because it reframes prediction targets in ways 
directly relevant to risk management. Instead of predicting only “illness tomorrow,” WGS-ML can 
predict “which food/animal source is most likely,” “which clonal complex has high virulence 
potential,” or “which production environment harbors higher contamination risk.” For Listeria 
monocytogenes, ML applied to WGS has been used to predict virulence potential and even tolerance 
to disinfectants capabilities that inform facility-level interventions and sanitation standards (Baker-
Austin et al., 2023; Wang et al., 2021). For Campylobacter and Salmonella, WGS-ML methods attribute 
human cases to poultry, cattle, or other reservoirs with improved accuracy over earlier models, 
enhancing the targeting of controls along the poultry meat chain and beyond (Munck et al., 2020; 
Scallan et al., 2011). Newer hierarchical ML models combine phylogenetic structure with learning to 
enable rapid geographic source attribution at continental to sub-national scales, again supporting the 
practical need to prioritize investigations and recalls (Turner & et al., 2024; Zhang et al., 2021). Because 
these pipelines ingest standardized surveillance genomes, they align naturally with national laboratory 
networks and cross-border data sharing, broadening their international utility. 
Another strand of AI-enabled risk prediction synthesizes environmental and supply-chain signals to 
forecast pathogen presence or microbial indicators in food and agricultural waters, which is critical for 
E. coli, Salmonella, and Vibrio management. Studies have shown that ML models trained on 
physicochemical and hydrometeorological features can predict E. coli levels in agricultural water with 
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performance competitive to mechanistic baselines while enabling interpretable feature importance for 
operational decisions (Rose & et al., 2025). In shellfish sanitation, hybrid and ML models incorporating 
tides, rainfall, and land-use characteristics have predicted norovirus outbreaks, enabling dynamic 
classification of harvesting areas (Chenar & Deng, 2018). Climate-sensitive applications are accelerating 
as warming seas and extreme precipitation alter coastal risks: recent work quantifies the poleward 
expansion and season lengthening of Vibrio hazards and uses ML to capture multifactorial drivers, 
which is directly relevant to international coastal public-health programs (Baker-Austin et al., 2023; 
Collins et al., 2024). These models convert environmental surveillance into concrete public-health 
actions by delivering thresholds and risk tiers that trigger advisories, temporary closures, or intensified 
sampling. 
Finally, AI’s role in modernizing public-health surveillance rests on integrative architectures and 
governance. Successful deployments couple modeling with data pipelines (secure access to 
surveillance, lab, environmental, and open-source streams), MLOps for monitoring drift and 
recalibration, and human-in-the-loop review by epidemiologists and inspectors. Studies repeatedly 
stress the importance of validation aligned to real decision contexts (e.g., prospective temporal 
validation rather than random cross-validation), attention to class imbalance and rare-event detection, 
and transparency that allows risk managers to justify actions (Mikhailov et al., 2023; Oldroyd et al., 
2021). Internationally, cross-jurisdictional learning for instance, adapting source-attribution models 
trained in one country with transfer learning or hierarchical structures has shown promise for rapid 
uptake where local training data are limited.  
The objective of this literature review is to systematically map, evaluate, and synthesize the peer-
reviewed evidence on artificial intelligence–based models used to predict foodborne pathogen risk 
within public health systems. Specifically, this review aims to achieve five integrated goals that together 
create a comprehensive, decision-oriented picture of the field. First, it will delineate the problem space 
by defining the prediction targets used in public health practice such as outbreak detection, case 
forecasting, spatiotemporal risk mapping, inspection prioritization, and source attribution and by 
clarifying how these targets align with operational time horizons and geographic scales. Second, it will 
inventory and classify the data streams that underpin AI models for this domain, including surveillance 
and laboratory reporting, whole-genome sequencing, environmental and climate measurements, 
supply-chain and business attributes, and consumer-generated signals, alongside the principal feature 
engineering strategies applied to each. Third, it will develop a transparent taxonomy of modeling 
approaches, spanning baselines and tree-based learners, kernel and distance methods, anomaly 
detection, deep learning architectures, probabilistic and Bayesian frameworks, graph-based methods 
for traceback and attribution, and hybrid or ensemble designs, documenting training schemes, 
hyperparameter practices, and approaches to class imbalance, leakage prevention, and uncertainty 
quantification. Fourth, it will critically appraise validation and reporting practices using established 
criteria, capturing internal, temporal, and external validation designs; discrimination, calibration, and 
alerting metrics; subgroup performance; interpretability techniques; and evidence of deployment or 
operational performance where reported. Fifth, it will synthesize cross-study findings into structured 
evidence tables and visual gap maps that highlight consistencies, divergences, and knowledge gaps 
across pathogens, tasks, data modalities, geographies, and organizational contexts, while explicitly 
noting reproducibility assets such as code, models, and data availability. The scope of this review is 
limited to studies that present or evaluate AI or machine learning models for predicting foodborne 
pathogen risk in human public health settings, excluding purely analytical chemistry, bench-only 
detection, or non-predictive descriptive work unless directly coupled to risk prediction. The intended 
contribution is a rigorous, organized evidence base and a practical conceptual framework that allow 
researchers, analysts, and public health professionals to understand what has been studied, how it has 
been evaluated, and where concentrated methodological or dataset development could most efficiently 
advance predictive performance and operational utility. 
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LITERATURE REVIEW 
The literature on artificial intelligence (AI) for predicting foodborne pathogen risk in public health 
systems spans a diverse yet converging set of aims, data streams, and modeling strategies that together 
define a rapidly maturing field. At its core, this body of work addresses prediction targets that are 
directly actionable for health authorities: early detection of outbreak signals, short- and medium-
horizon forecasting of cases or hazards, spatiotemporal risk mapping to guide inspections and 
sampling, and source attribution to prioritize recalls and traceback investigations. Studies draw on 
heterogeneous inputs that reflect the full surveillance ecosystem, including routine case notifications, 
laboratory results, whole-genome sequencing, environmental and climate measurements, hydrological 
and oceanographic indicators, geodemographics, business attributes, supply-chain and mobility 
patterns, and consumer-generated signals such as complaints or online reviews. Transforming these 
inputs into predictive features relies on careful temporal alignment, leakage avoidance, and 
representation of spatial dependence, seasonality, and domain-specific constructs such as phylogenetic 
relatedness or food-chain topology. Methodologically, the literature covers regularized regression and 
tree-based ensembles as strong baselines; kernel and distance-based classifiers; anomaly detection for 
rare-event signals; deep learning architectures tailored to sequences, time-series, and graphs; 
probabilistic and Bayesian approaches for uncertainty-aware inference; and hybrid frameworks that 
fuse mechanistic knowledge with machine learning. Across problem settings, credible evaluation 
hinges on prospective or temporally separated validation, geographic generalization tests, and metrics 
that reflect operational decision quality, including discrimination, calibration, alert yield, lead time, 
and false-alarm burden, as well as subgroup performance to surface equity considerations. 
Interpretability practices feature attribution, partial dependence, counterfactual probes, and 
transparent model cards are increasingly emphasized to support regulatory scrutiny and field 
adoption. A prominent strand integrates genomics with learning to classify likely sources, reservoirs, 
or virulence properties, while another synthesizes environmental and hydrological drivers for coastal 
and agricultural water risks. Finally, the deployment-oriented literature underscores pipeline 
readiness: data provenance, reproducibility assets, monitoring for drift, and human-in-the-loop review 
that aligns model outputs with inspection and epidemiologic workflows. Taken together, these themes 
motivate a structured synthesis that maps prediction targets to data, models, validation designs, and 
operational endpoints, establishing a coherent foundation for the detailed subsections that follow. 
Data Sources & Surveillance Streams 
Modern AI models for predicting foodborne pathogen risk draw strength from a mosaic of 
complementary data sources that collectively span laboratory genomics, event/outbreak notifications, 
regulatory alerts, routine inspections, and syndromic signals. At the laboratory core are whole-genome 
sequencing (WGS) repositories that enable high-resolution linkage among clinical, food, and 
environmental isolates. In the United States, PulseNet’s transition from pulsed-field gel electrophoresis 
to WGS has reshaped cluster detection by increasing discriminatory power and tightening inference 
windows for cross-jurisdictional outbreaks (Ribot et al., 2019; Tolar et al., 2019). In parallel, the FDA’s 
GenomeTrakr network funnels standardized WGS data into the NCBI Pathogen Detection ecosystem, 
creating a continuously updated substrate for AI tasks such as outbreak clustering, lineage tracking, 
and source attribution (Allard et al., 2016; Danish & Zafor, 2022). Crucially, the value of these genomic 
streams is not merely technical: economic evaluation suggests that scaling public WGS isolate 
deposition yields substantial public-health benefits via faster recalls and smaller outbreaks, with 
benefits outweighing program costs early in implementation (Allard et al., 2016; Danish & Md.Kamrul, 
2022). For AI practitioners, these infrastructures provide labeled graphs of genetic relatedness and 
temporally stamped clusters that can be embedded or linked to metadata (food commodity, facility, 
geography) for supervised and semi-supervised learning. Yet genomic insight is only one layer; 
outbreak reporting systems add context. In Europe, the Epidemic Intelligence and Information System 
for food- and waterborne diseases (EPIS-FWD) facilitates rapid, structured cross-border information 
exchange that AI models can mine for early signals and features tied to multi-country spread dynamics 
(Jahid, 2022; Nogales et al., 2023). Together, these laboratory and outbreak streams anchor high-fidelity 
targets (e.g., “cluster joins a known lineage,” “notification escalates to multi-state scope”) that 
downstream models can learn to anticipate from upstream, noisier proxies. 
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Because clinical reporting can be delayed or incomplete, syndromic and near–real-time signals play a 
complementary role in closing latency gaps for enteric pathogens. The national BioSense/NSP 
emergency-department infrastructure has shown that chief-complaint subsyndromes (e.g., diarrhea; 
nausea/vomiting) track norovirus activity and correlate with confirmed outbreaks, supporting their 
use for timely situational awareness and short-horizon forecasting (Baker et al., 2024; Nogales et al., 
2023). Systematic reviews of ED-based syndromic surveillance confirm its broad utility and catalog 
design considerations signal specificity, coding practices, and calibration against laboratory outcomes 
that matter for reliable deployment (Brown et al., 2021; Arifur & Noor, 2022). More recently, a GI-
specific systematic review synthesizes evidence across countries and data types (ED visits, telehealth, 
medication sales, school absenteeism), underscoring that properly specified syndromic systems can 
furnish early detection and routine monitoring value when combined with conventional surveillance 
(Brown et al., 2021; Hasan & Uddin, 2022). For AI pipelines, these feeds provide high-frequency 
covariates and candidate proxy targets that improve nowcasting of illness activity, especially when 
models explicitly account for reporting delays and partial observability. Beyond healthcare-based 
signals, complaint systems and public-facing reporting portals contribute human-in-the-loop 
observations of suspected foodborne illness; recent comparative work ties complaint-system design 
choices (e.g., triage rules, disclosure practices) to inspection outcomes, offering structured features 
(complaint volumes, resolution times, channel mix) that can refine inspection-prioritization models 
(Smith, et al., 2021). These “fast” streams are noisier than confirmatory lab data, but when engineered 
with temporal alignment and debiasing, they help AI models deliver earlier risk signals at operational 
cadence (Rahaman, 2022). 
 

Figure 3: Data Sources and Surveillance Streams  

 

 
 
Regulatory and inspection data further broaden the feature landscape by describing hazards moving 
through supply chains and hygiene practices within establishments. In the European Union, the Rapid 
Alert System for Food and Feed (RASFF) emits structured notifications (hazard category, product, 
origin, action taken) that capture risks before illnesses are detected; comprehensive analyses of RASFF 
data by product domain and by country demonstrate stable metadata fields and interpretable patterns  
(e.g., product × origin interactions) that are well-suited to supervised learning and network analytics 
(Čapla et al., 2023; Rha et al., 2013). On the retail end, routine inspection and disclosure systems yield 
establishment-level attributes inspection scores, infraction types, compliance history that have been 
validated as reliable inputs for surveillance and evaluation; field audits of the UK Food Hygiene Rating 
Scheme (FHRS) support both its spatial accuracy and its use in risk-based targeting (Adedire et al., 
2024; Rahaman, 2022b). From an AI perspective, these regulatory streams are valuable because they 
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connect hazards to traceable entities (firms, commodities, lots) and actionable levers (border rejections, 
withdrawals, closures), enabling models to rank-order inspection queues and anticipate 
noncompliance hotspots (Rahaman & Ashraf, 2022). When fused with genomics and syndromic data, 
they provide a full “sensorium” from upstream hazards to downstream illness proxies, allowing multi-
view learning that is both early and precise. Collectively, laboratory WGS networks, outbreak and 
epidemic-intelligence platforms, syndromic telemetry, complaint systems, and regulatory/inspection 
datasets constitute a layered surveillance architecture; AI models that respect each stream’s cadence, 
reliability, and bias profile can translate this architecture into robust, decision-ready risk predictions 
across public-health systems (Adedire et al., 2024; Čapla et al., 2023; Nogales et al., 2023). 
Feature Engineering & Data Readiness 
Effective feature engineering for foodborne pathogen–risk prediction begins with disciplined temporal 
structuring and spatial representation of surveillance and environmental data. Time-aware pipelines 
typically harmonize multi-cadence inputs (e.g., daily environmental sensors, weekly syndromic counts, 
irregular inspections) by constructing lagged and windowed aggregates that reflect biological latency 
and operational horizons, then separating trend from seasonality to avoid spurious correlations (Islam, 
2022). A widely adopted approach is STL decomposition, which isolates seasonal and trend 
components via locally weighted regression; this allows models to learn from de-seasonalized residuals 
while retaining interpretable seasonal signals as explicit covariates (Lin et al., 2017; Valavi et al., 2019). 
Spatial structure is encoded with neighborhood statistics and distance-weighted features to capture 
diffusion and shared exposures; hot-spot indicators such as the Getis–Ord Gi* summarize local 
clustering and, when used as inputs, can sharpen establishment-level or area-level risk ranking by 
supplying the model with context beyond a single unit (Getis & Ord, 1992;  Hasan et al., 2022). Because 
naive random cross-validation leaks spatial dependence, robust estimation of generalization hinges on 
geographically informed resampling; block cross-validation partitions data into spatial or 
environmental “folds,” providing less biased performance estimates for maps and spatially targeted 
interventions (Guo et al., 2017; Redwanul & Zafor, 2022; Valavi et al., 2019). Temporal structure requires 
similar care: data splits must honor chronology, reserving future periods for testing to avoid look-ahead 
bias, while also respecting nested hierarchies (locations within jurisdictions, facilities within chains). 
Guidance from ecology and epidemiology recommends cross-validation strategies that explicitly 
account for temporal, spatial, hierarchical, and phylogenetic structure principles that transfer directly 
to public-health risk prediction tasks where leakage can quietly inflate accuracy and understate 
operational error (Cleveland et al., 1990; Rezaul & Mesbaul, 2022; Roberts et al., 2017). With these 
foundations, engineered features seasonal harmonics, lagged and cumulative incidence, meteorological 
anomalies, neighborhood risk indices, and hierarchical identifiers become both biologically plausible 
and evaluation-consistent, supporting downstream models that produce decision-relevant 
probabilities rather than fragile fits to historical artifacts (Cleveland et al., 1990; Hasan, 2022; Roberts et 
al., 2017). 
Data readiness further encompasses principled handling of missingness, imbalance, and label noise 
ubiquitous challenges in surveillance streams. Missing covariates arise from reporting delays, sensor 
outages, and heterogeneous laboratory practices; multivariate imputation by chained equations (MICE) 
treats each variable with missingness as a regression on the others, iterating to generate completed 
datasets under a coherent imputation model while propagating uncertainty to downstream analyses. 
This approach is flexible to mixed data types and aligns well with the multivariate nature of public-
health inputs (Gneiting & Raftery, 2007; Buuren & Groothuis-Oudshoorn, 2011). Rare but critical events 
e.g., violations that lead to closures, outbreak-linked clusters, or high-hazard environmental 
exceedances create severe class imbalance. Synthetic Minority Over-sampling Technique (SMOTE) 
combats this by synthesizing new minority instances along feature-space line segments connecting 
nearest neighbors, improving classifier sensitivity without naive duplication (Lundberg & Lee, 2017; 
Tarek, 2022). For deep learners on highly skewed targets, focal loss dynamically reweights hard, 
informative examples and down-weights easy, majority examples, sharpening decision boundaries 
where public-health benefit is greatest (Lundberg & Lee, 2017; Kamrul & Omar, 2022). These remedies 
should be coupled with leakage-safe preprocessing: imputations and resampling are fit on training 
folds only and applied to validation/test folds to avoid optimistic bias. In practice, pipelines sequence 
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imputers, scalers, encoders, and resamplers inside cross-validation loops that respect spatial and 
temporal blocks, ensuring that improvements in recall or precision for rare hazards reflect real 
generalization not information bleeding from future or neighboring units (Kamrul & Tarek, 2022). 
When carefully implemented, these readiness steps yield feature matrices that are statistically coherent, 
ethically sound (no inadvertent proxy leakage of protected attributes), and operationally resilient 
across jurisdictions and time (Mubashir & Abdul, 2022). 
 

Figure 4: Workflow for AI-Based Foodborne Pathogen Risk Prediction 

 

 
 
The final pillar of readiness is translating engineered signals into calibrated, interpretable probabilities 
that can be scrutinized by regulators and field staff. Post-hoc interpretation methods such as SHAP 
(Shapley Additive Explanations) attribute predictions to feature contributions consistently across 
models, enabling reviewers to verify that drivers of elevated risk are epidemiologically sensible (e.g., 
recent neighborhood closures, anomalous seawater temperatures, repeated critical violations) rather 
than artifacts of coding or data leakage (Chawla et al., 2002; Lundberg & Lee, 2017; Muhammad & 
Kamrul, 2022). Because decisions (inspection prioritization, advisories, recalls) depend on thresholds, 
calibration is as important as discrimination: over-confident models can trigger unnecessary actions, 
while under-confident ones can miss hazards. Empirical assessments show that modern neural and 
ensemble models are often miscalibrated; temperature scaling and related recalibration techniques can 
restore alignment between predicted probabilities and observed frequencies without sacrificing 
accuracy (Gneiting & Raftery, 2007; Reduanul & Shoeb, 2022). More broadly, proper scoring rules such 
as the Brier score and logarithmic score formalize evaluation of probabilistic predictions in ways that 
reward both sharpness and calibration, furnishing objective criteria for model comparison and policy-
relevant tuning (Gneiting & Raftery, 2007; Kumar & Zobayer, 2022). Embedding these tools into MLOps 
provides continuous monitoring of drift in feature distributions and calibration, with alerts for 
retraining when seasonal patterns shift, reporting practices change, or new establishments enter the 
system. In effect, interpretability and calibration are not post-hoc luxuries but core elements of data 
readiness: they convert engineered features into trustworthy signals that can withstand audit, support 
equitable decision-making across neighborhoods and operator types, and maintain stability as 
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surveillance ecosystems evolve (Gneiting & Raftery, 2007; Roberts et al., 2017; Buuren & Groothuis-
Oudshoorn, 2011). 
Model Families & Learning Paradigms 
Tree-based ensemble learners anchor many public-health risk pipelines because they handle 
nonlinearities, high-cardinality categorical variables, and complex interactions with minimal 
distributional assumptions. Random forests average predictions across many decorrelated 
classification or regression trees, reducing variance while retaining the ability to model heterogeneous 
effects across establishments, geographies, and seasons; they offer strong baselines and robust variable-
importance diagnostics that align with regulatory needs for transparent drivers of risk (Hochreiter & 
Schmidhuber, 1997; Sadia & Shaiful, 2022). Gradient boosting frameworks extend this idea by fitting 
trees to residuals in sequence, yielding highly accurate additive models that can capture subtle 
structure in spatiotemporal, environmental, and inspection-history features relevant to foodborne 
pathogen prediction (Salinas et al., 2020; Noor & Momena, 2022). Practical implementations such as 
XGBoost optimize both statistical bias–variance trade-offs and systems-level constraints (sparsity-
aware split finding, regularization, parallelization), which matters when surveillance and regulatory 
datasets are wide, partially missing, and updated at different cadences (Breiman, 2001; Cortes & 
Vapnik, 1995; Istiaque et al., 2023). Margin-based learners like support vector machines (SVMs) provide 
an alternative inductive bias: by maximizing a separating margin (with kernels to induce nonlinear 
decision boundaries), they can excel in high-dimensional feature spaces constructed from inspections, 
environment, or genomics, especially when labeled examples are limited but features are informative 
(Breiman, 2001; Cortes & Vapnik, 1995; Hasan et al., 2023). For rare event detection e.g., critical 
violations or anomaly-like signals preceding outbreaks one-class paradigms and specialized anomaly 
detectors are valuable complements: support vector data description builds a tight boundary around 
“normal” operations and flags deviations, while isolation forests explicitly search for short random 
partition paths that isolate outliers, often outperforming density estimators in high dimensions. 
Together, these supervised and semi-supervised ensemble and margin methods create a flexible toolkit 
for risk classification, hotspot ranking, and early signal detection in public-health workflows where 
interpretability, speed, and calibration are jointly important (Friedman, 2001; Liu et al., 2008; Tax & 
Duin, 2004). 
 

Figure 5: AI-Based Prediction of Foodborne Pathogen Risk 

 
 
Sequence models and attention-based architectures broaden modeling power for nowcasting and 
forecasting tasks central to pathogen-risk prediction. Long short-term memory networks (LSTMs) 
introduce gated recurrence that preserves long-range dependencies while mitigating vanishing 
gradients, enabling models to integrate multi-scale temporal signals (e.g., weekly syndromic counts, 
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daily environmental drivers, monthly inspection cycles) into coherent short-horizon predictions of risk 
or incidence (Chen & Guestrin, 2016; Wu et al., 2020). Probabilistic sequence modeling with 
autoregressive recurrent networks further reframes the goal from point prediction to full predictive 
distributions crucial when authorities set thresholds for advisories or inspection triage under 
uncertainty. DeepAR exemplifies this shift by training a global recurrent model over many related time 
series and emitting calibrated quantiles, allowing shared learning across jurisdictions while preserving 
series-specific dynamics (Lim et al., 2021; Hossain et al., 2023). More recently, Temporal Fusion 
Transformers (TFT) combine static covariate encoders, variable-selection networks, and gated residual 
connections with multi-head attention to deliver interpretable multi-horizon forecasts an attractive 
property for regulatory environments that demand traceable rationales for alerts and resource 
allocation (Lim et al., 2021; Liu et al., 2008; Rahaman & Ashraf, 2023). Attention mechanisms highlight 
which covariates (e.g., temperature anomalies, repeat critical violations, upstream contamination 
notices) drive a given forecast window, while temporal gating improves stability under regime changes 
features that fit the operational realities of shifting seasonality, supply chains, and reporting practices. 
In practice, these deep learners complement tree-based ensembles: the latter often dominate in tabular, 
cross-sectional risk scoring (e.g., establishment prioritization), while LSTMs, TFTs, and similar 
architectures shine in multi-horizon forecasting and delay-aware nowcasting where explicit temporal 
representation and uncertainty quantification are required (Hochreiter & Schmidhuber, 1997; Tax & 
Duin, 2004). 
Spatiotemporal Prediction & Early Warning 
Early warning for foodborne pathogen risk depends on models that represent how signals evolve 
jointly in space and time and that can raise statistically defensible alarms ahead of clinical confirmation. 
A cornerstone is the family of spatial and space–time scan statistics, which search a moving window 
(cylinders in space–time) for unusually high counts relative to a baseline, producing likelihood-based 
clusters with explicit significance control suitable for operational alerting. The prospective version 
extends the classical framework to streaming surveillance, continually evaluating new data to flag 
emergent hotspots while accommodating seasonality and known covariates in the expectation surface 
capabilities that align well with routine public-health monitoring and inspection triage (Kulldorff et al., 
2005; Lindgren et al., 2011). A complementary permutation approach avoids the need for population-
at-risk denominators and adjusts for purely temporal and purely spatial variation by design, making it 
attractive when denominators are uncertain, multi-jurisdictional, or rapidly changing (Killick et al., 
2012; Sultan et al., 2023). Because real clusters often deviate from idealized circular shapes e.g., they 
trace supply routes, coastlines, or river basins flexibly shaped scan statistics improve sensitivity by 
allowing irregular cluster geometries without forfeiting rigorous multiple-testing correction, thereby 
enhancing early detection in settings where geography channels contamination risk in nonconvex 
patterns (Hossen et al., 2023; Tango & Takahashi, 2005). In parallel, hierarchical Bayesian disease-
mapping advances allow risk surfaces to be estimated with proper uncertainty at fine spatial scales 
while smoothing appropriately across neighbors; when implemented with modern computational 
tools, these models deliver continuous risk maps that can be difference-filtered over time to provide 
early warnings that are less noisy than raw counts yet responsive enough for weekly decision cycles 
(Gama et al., 2014; Tawfiqul, 2023; Rue et al., 2009). Together, these scan-based and Bayesian surface-
modeling paradigms supply the statistical backbone for practical surveillance dashboards that must 
balance timeliness, specificity, and interpretability under data limitations endemic to food safety. 
Timely detection also hinges on modeling the temporal dynamics of surveillance streams themselves, 
where reporting delays, day-of-week effects, and seasonal baselines can mask or mimic genuine 
emergence (Uddin & Ashraf, 2023). Aberration-detection algorithms refined for national notifiable 
disease monitoring provide a template: by constructing expected values with overdispersed count 
models and empirically controlling false discovery across many parallel series, improved quasi-Poisson 
versions of the Farrington method have delivered stable, well-calibrated alarms suitable for large-scale, 
automated monitoring an attractive property for early warning pipelines that must scan hundreds of 
pathogen–region–commodity combinations in parallel (Kulldorff, 2001; Momena & Hasan, 2023). For 
situations where growth rates and short-horizon transmissibility carry operational meaning e.g., 
anticipating near-term norovirus burdens relevant to shellfish closures or water-quality advisories real-
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time estimation of the instantaneous reproduction number from partial counts has become a practical 
tool; by translating noisy incidence into interpretable growth metrics with credible intervals, these 
estimators support “heads-up” action under uncertainty (Cori et al., 2013; Lazer et al., 2014; Sanjai et 
al., 2023). Formal change-point detection complements both strategies by locating structural breaks in 
mean or variance that may signal the onset of widespread contamination or regime shifts in reporting 
(Akter et al., 2023); fast, exact search methods make it feasible to embed change-point detection inside 
daily pipelines without sacrificing statistical optimality, thereby offering a second, orthogonal view of 
early emergence (Killick et al., 2012; Noufaily et al., 2013). Crucially, all three strands aberration 
detection, growth-rate estimation, and change-point methods are designed to operate prospectively 
with explicit control of false positives, a requirement when public communication, inspections, and 
recalls impose real costs and must be justified statistically. 
 

Figure 6: Spatiotemporal Prediction and Early Warning Framework  

 
Operational early warning must also contend with nonstationarity and data drift: seasonal regimes 
change, suppliers rotate, and behaviors shift, such that models trained on last year’s patterns can 
underperform when the feature and label distributions evolve (Tamanna & Ray, 2023). A mature body 
of work on concept drift spanning detection, adaptation, and evaluation provides a principled 
vocabulary and toolbox for surveillance pipelines, emphasizing that continuous monitoring of error 
distributions and feature marginals, coupled with adaptive learners or periodic refitting, is necessary 
to maintain calibration and alert value as systems evolve (Danish & Zafor, 2024; Gama et al., 2014). At 
the same time, high-visibility failures in digital epidemiology caution against uncritical reliance on 
proxy signals or complex models without robust out-of-sample validation and bias audits; the well-
documented case of overconfident flu predictions from search-query data demonstrates how media 
attention, feedback loops, and shifting user behavior can derail early warning absent rigorous 
grounding in surveillance reality (Ray et al., 2024; Noufaily et al., 2013). In practice, robust early-
warning architectures for foodborne risk therefore blend methods with complementary inductive 
biases: space–time scan statistics to localize emerging clusters with clear p-values; Bayesian 
spatiotemporal models to estimate smooth risk surfaces and their changes with quantified uncertainty; 
aberration detection and change-point algorithms to monitor many series efficiently; and growth-rate 
estimation to communicate interpretable, near-term dynamics (Istiaque et al., 2024). Implemented with 
modern inference engines that render latent Gaussian models tractable at national scale and with 
spatial bases that map irregular domains into computationally efficient Gaussian Markov random 
fields, these systems can run at the cadence required for inspections and advisories while preserving 
transparency for regulatory review. The result is an early-warning portfolio that is both practically 
deployable and statistically defensible: rapid where speed is essential, conservative where false alarms 
are costly, and adaptive to the moving target that is real-world, multi-stream surveillance (Cori et al., 
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2013; Lazer et al., 2014; Noufaily et al., 2013). 
Genomics/WGS-Informed Risk Models 
Whole-genome sequencing (WGS) has shifted foodborne disease surveillance from low-resolution 
fingerprinting toward genome-scale analytics that directly enable risk prediction, outbreak recognition, 
and source attribution. Two infrastructure advances underpin this shift: (i) standardized genotyping 
schemas such as core-genome multilocus sequence typing (cgMLST), which provide portable, stable 
identifiers for pathogen lineages across laboratories and time, and (ii) database platforms that store 
genomes together with rich epidemiologic metadata, enabling routine, near–real-time analysis. 
cgMLST extends classic MLST to thousands of loci, improving resolution for cluster delineation while 
preserving the nomenclatural continuity that public health programs rely on when communicating 
about strains across jurisdictions (Lees et al., 2019; Hasan et al., 2024). On the data side, implementations 
like BIGSdb give agencies a scalable way to curate cgMLST definitions and link them to isolates, 
facilities, and food/environmental sources, making it feasible to embed genomic signals into risk 
pipelines (Maiden et al., 2013; Rahaman, 2024). At the network level, PulseNet International’s plan for 
global WGS adoption codifies how genomics plugs into laboratory confirmation, cluster detection, and 
cross-border coordination key prerequisites for translating sequence variation into operational early 
warning and targeted inspection or recall (Hasan, 2024; Pightling et al., 2018). Together, these elements 
establish a standardized genomic “language” for risk modeling: cgMLST or SNV clusters define 
epidemiologically meaningful events; database platforms render them queryable at scale; and 
international surveillance governance provides the procedural scaffolding for acting on model outputs 
in real time (Allard et al., 2018; Ashiqur et al., 2025). 
 

Figure 7: Workflow of Genomics-Informed Risk Models  

 
As analytic methods matured, WGS empowered new machine-learning tasks that directly support 
public-health decision-making: cluster detection, lineage tracking, geographic or reservoir attribution, 
and prioritization of likely transmission links for traceback. Unsupervised and semi-supervised tools 
such as PopPUNK (Population Partitioning Using Nucleotide k-mers) rapidly partition large genome 
collections into genomic neighborhoods that align with epidemiologically coherent clusters; the 
resulting cluster IDs and distances function as high-signal features for supervised risk models and as 
transparent units for field investigation (Hasan, 2025; Nadon et al., 2017). Complementary visualization 
frameworks like GrapeTree project core-genome relationships into interpretable trees for thousands of 
isolates, allowing analysts to contextualize emerging clinical clusters against historical food and 
environmental genomes an important step in converting sequence similarity into hypotheses about 
sources and distribution (Ismail et al., 2025; Zhou et al., 2018). Reviews focused on food safety 
operations emphasize how these WGS analytics when coupled with consistent metadata capture on 
food commodity, facility, and geography improve timeliness and accuracy in outbreak investigations 
and enhance risk-based prevention by revealing persistent contamination lineages in processing 
environments (Allard et al., 2018; Jolley & Maiden, 2010; Jakaria et al., 2025). Prospective genomic 
surveillance strengthens this case: routine, forward-looking WGS applied to incoming clinical isolates 
can surface cryptic clusters and link them to previously sampled food/environment reservoirs, 
enabling earlier interventions than complaint-driven approaches and providing structured targets for 
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AI systems that rank establishments or commodities by inferred risk (Achtman et al., 2012; Ronholm et 
al., 2016). In effect, WGS transforms risk modeling from inference on aggregate counts to inference on 
evolving populations of lineages and clusters, with machine-learning methods leveraging k-
mer/cgMLST features, genomic distances, and cluster membership to predict which links merit 
immediate control action (Ashton et al., 2016). 
Methodological rigor in WGS-informed risk models requires attention to analysis choices that affect 
reproducibility, calibration, and transportability across laboratories. SNP-calling parameters and 
reference-genome selection can materially change pairwise distances and inferred cluster boundaries, 
with downstream implications for whether a facility, product, or supplier is flagged as high risk 
underscoring the need for harmonized workflows and sensitivity analyses when integrating genomic 
features into public-health AI (Ashton et al., 2016). Broader syntheses highlight how WGS supports not 
only outbreak response but also proactive hazard control: by mapping persistence-prone lineages and 
stress-adapted clades in processing environments, programs can prioritize sanitation, sampling, and 
equipment redesign where genomic evidence indicates recurrent contamination, yielding features that 
capture establishment-level baseline risk beyond short-term incident clusters (Ronholm et al., 2016). At 
the population-genomic level, cgMLST and related schema sit within a continuum that started with 
classical, portable MLST and now scales to whole-genome representations; this continuity matters 
because it enables longitudinal analyses and retrospective re-typing, allowing models trained today to 
remain interpretable as databases expand (Ashton et al., 2016). When combined, these practices 
standardized genotyping, validated clustering/partitioning, carefully specified variant calling, and 
metadata-rich repositories turn WGS into a stable substrate for AI-driven risk prediction that can be 
audited, compared across sites, and kept operationally relevant as surveillance networks and industrial 
ecosystems evolve (Ashton et al., 2016; Maiden et al., 2013; Pightling et al., 2018).  
Inspection & Establishment Risk Scoring 
Risk-based inspection and establishment-level risk scoring seek to allocate scarce regulatory effort 
toward venues most likely to harbor critical food safety violations. Rather than canvassing all premises 
at fixed intervals, modern programs estimate the probability that a given outlet will fail an inspection 
or exhibit a critical violation, and then prioritize accordingly. Early demonstrations drew on digital 
exhaust particularly consumer review text and ratings to infer hygiene risk long before the next 
scheduled on-site visit, showing that language cues about cleanliness, illness, or temperature control in 
public reviews can signal elevated violation risk (Kim et al., 2022; Luca, 2020). Disclosure policies 
interact with these models by shaping both behavior and data: when jurisdictions implemented point-
of-service grading or color-coded cards, average scores improved, suggesting establishments respond 
to reputational incentives that risk models can exploit (Kang et al., 2013). Large program evaluations 
further indicate that jurisdictions posting grades at the point of service exhibit lower restaurant-
associated outbreak rates, supporting the public health relevance of inspection results as a risk target 
and validating the use of those outcomes as modeling endpoints (Kim et al., 2022). Complementary 
evidence links inspection scores with microbiological contamination and outbreak patterns, reinforcing 
that visual inspections, though imperfect, are sufficiently informative to anchor predictive screening 
and composite risk indices (Choi & Scharff, 2017; Lahti et al., 2022). Together, these strands justify 
inspection risk scoring as a pragmatic, data-driven triage mechanism that can increase the yield of 
critical findings per inspector-hour while maintaining epidemiologic relevance (Public Health, 2017). 
Operationally, inspection risk models ingest heterogeneous features spanning establishment 
characteristics (e.g., license class, menu risk, alcohol service), inspection history (e.g., prior criticals, 
time since last visit), seasonality, and neighborhood context, sometimes augmented with disclosure-
era consumer feedback streams. After Finland’s nationwide disclosure rollout, analyses revealed 
systematic regional and local differences in posted results, implying latent structural and contextual 
factors that risk scores can capture to tailor inspection frequency and visit type (Kaskela et al., 2021;  
Adamson, et al., 2021). Longitudinal work on disclosed inspections also shows that while many 
noncompliances improve between visits, certain critical items persist, underscoring the value of 
dynamic risk estimates that emphasize recurrence and item-level trajectories rather than static totals 
(Fleetwood et al., 2019). From the demand side, experiments and field studies on how consumers 
interpret posted scores demonstrate that score format and salience modify behavioral responses; 
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effective communication can amplify preventive incentives for firms and, in turn, sharpen the 
predictive contrast that models learn from (Harris et al., 2017; Hasan, 2025). Finally, large multi-
jurisdiction assessments have linked programmatic choices most notably visible grading and posting 
to measurable reductions in reported outbreak rates, suggesting that a risk scoring pipeline integrated 
with transparent disclosure and targeted follow-up can deliver system-level gains in both efficiency 
and safety (Fleetwood et al., 2019; Harris et al., 2017). 

 
Figure 8: Workflow for Inspection and Establishment Risk Scoring  

 
Two additional implementation questions shape the design of establishment risk scores: validity of the 
inspection outcome and equity in scheduling. Field validation work in England demonstrated that 
hygiene ratings align spatially and substantively with on-the-ground audits, supporting their use as 
ground truth for modeling and performance monitoring (Fleetwood et al., 2019; Harris et al., 2017). 
Studies comparing routine inspection results between outbreak and non-outbreak premises further 
illuminate which inspection dimensions (e.g., cross-contamination, temperature control) most strongly 
track episodic risk, guiding the weighting of features and the composition of composite risk indices 
(Adamson, et al., 2021). On the equity front, neighborhood sociodemographic profiles and inspection 
frequency correlate with outcomes, warning that purely historic, outcome-driven models may 
unintentionally encode geographic disparities unless explicitly audited and calibrated (Lahti et al., 
2022; Zafor, 2025). In U.S. metropolitan settings, regulatory innovations such as “grade pending” have 
been examined as levers to stabilize disclosure while maintaining incentives, again emphasizing that 
scoring, inspection logistics, and communication design must coevolve (Kang et al., 2013; Luca, 2020; 
Uddin, 2025). The emerging best practice is therefore not just to optimize predictive accuracy but to 
embed inspection risk scoring within a governance architecture that validates labels, monitors fairness 
across establishment and neighborhood strata, and links model-flagged premises to corrective action 
pathways and transparent, comprehensible disclosure (Fleetwood et al., 2019; Harris et al., 2017; Lahti 
et al., 2022). 
Validation and Generalizability 
Establishing the credibility of AI models for foodborne risk prediction begins with rigorous internal 
validation and clear reporting. Transparent Model Reporting (TRIPOD) remains the foundational 
guidance for specifying data sources, handling of missingness, model building, and performance 
assessment so that other investigators and agencies can reconstruct and appraise a model’s claims 
(Sanjai et al., 2025; Wolff et al., 2019). Beyond split-sample or naïve cross-validation, internal validation 
should use resampling schemes (bootstrap or repeated cross-validation) that preserve temporal 
ordering and reflect the data-generating process, with performance summarized by both 
discrimination and calibration (Steyerberg et al., 2010). Sample-size planning is often overlooked yet 
central: underpowered development inflates apparent performance and destabilizes coefficients or 
splits; principled calculations based on anticipated outcome prevalence, number of candidate 
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predictors, and targeted shrinkage provide guardrails before training begins (Saito & Rehmsmeier, 
2015). During model estimation, researchers should document feature specification, penalty choices, 
and tuning strategies so that optimism correction and shrinkage can be applied consistently across 
resamples, preventing overly certain predictions that will not reproduce in new settings (Moons et al., 
2015; Wynants et al., 2020). Finally, performance summaries should go beyond a single AUROC: 
because foodborne risks are rare and actions target the high-risk tail, precision–recall curves (and 
average precision) offer a more faithful picture of early-warning utility under class imbalance than ROC 
analyses alone (Vickers & Elkin, 2006). 
 

Figure 9: Generalizability of AI-Based Foodborne Risk Models 

 
Taken together, internal validation aligned to TRIPOD, grounded sample-size planning, and rare-
event-sensitive metrics create a defensible baseline before any claims about transportability are made 
(Moons et al., 2015; Vickers & Elkin, 2006; Wolff et al., 2019). Calibration connects model outputs to 
real-world decision thresholds advisories, recalls, and inspection triage depend on credible 
probabilities, not just ranking. Classic work emphasized that many high-discrimination classifiers 
produce poorly calibrated probabilities; post-hoc methods such as Platt/Zadrozny–Elkan style scaling 
and isotonic regression convert uncalibrated scores into well-behaved probabilities under held-out 
validation (Riley et al., 2020; Zadrozny & Elkan, 2002). Probability forecasts should then be assessed 
with strictly proper scoring rules, with the Brier score decomposing reliability (calibration), resolution 
(sharpness), and uncertainty quantities that matter when authorities weigh false alarms against missed 
hazards (Brier, 1950). Calibration curves (e.g., loess-smoothed observed vs. predicted) and calibration-
in-the-large with slope provide complementary diagnostics, while threshold-oriented summaries 
(positive predictive value at operational cut-points) quantify what inspectors will experience in the 
field (Collins et al., 2016). Because public-health systems act under uncertainty and resource constraints, 
decision-curve analysis translates calibrated probabilities into net benefit across a range of threshold 
probabilities, explicitly balancing true-positive gains against false-positive harms without requiring 
fixed cost estimates useful when comparing rule-based triage, simple baselines, and complex learners 
(Vickers & Elkin, 2006). Importantly, calibration and decision utility should be re-evaluated after every 
post-processing step (e.g., class-imbalance remedies, probability smoothing) and under the same 
validation design used for discrimination; otherwise, nominal improvements in AUPRC or AUROC 
can conceal deteriorating reliability at policy-relevant thresholds (Saito & Rehmsmeier, 2015; Wynants 
et al., 2020). In short, trustworthy deployment requires calibrated forecasts quantified by proper scoring 
and linked to rational decision analytics, not just high rank-based metrics. 
Proving generalizability requires external validation testing on new times, places, laboratories, or 
programs and documenting transport performance and failure modes. Systematic appraisals show that 
many health prediction models perform well in development yet degrade substantially when 
externally validated, often due to covariate shift, measurement differences, or spectrum effects; hence, 
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investigators must plan, conduct, and report external tests as a first-class objective, not an afterthought 
(Moons et al., 2015). Internal–external cross-validation (IE-CV) operationalizes this by rotating held-
out clusters (e.g., jurisdictions or years) through development and validation folds, yielding a 
distribution of performance across settings and early warnings about likely transport gaps (Saito & 
Rehmsmeier, 2015). When transport performance is heterogeneous, recalibration (intercept/slope 
updates) or lightweight refitting can restore reliability, but only if the target setting’s base rates and 
measurement processes are understood and explicitly modeled (Riley et al., 2020). Generalizability 
should also be framed in terms of use-case metrics: for early warning under rarity, AUPRC and lead-
time yield convey more than AUROC; for inspection triage, top-k precision and gains curves expose 
whether benefits concentrate in the actionable portion of the ranking (Vickers & Elkin, 2006). Finally, 
transparent reporting per TRIPOD and explicit risk-of-bias assessment per PROBAST reveal issues in 
participant selection, predictor definition, outcome ascertainment, and analysis multiplicity that 
commonly undermine transportability; PROBAST’s domain checklists guide readers through 
applicability judgments critical for public-health adoption (Wolff et al., 2019; Wynants et al., 2020). In 
combination external validation/IE-CV, recalibration, rare-event-aware metrics, and structured bias 
appraisal these practices transform promising in-house models into reliable tools whose performance 
and limits are known before they are embedded in surveillance and inspection workflows (Collins et 
al., 2016; Wynants et al., 2020; Wolff et al., 2019). 
METHODS 
This systematic literature review was conducted and reported in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline to ensure procedural 
transparency, reproducibility, and methodological rigor. A protocol specifying the research questions, 
eligibility criteria, search strategy, screening workflow, data-extraction schema, and risk-of-bias 
assessment was finalized before searching. Comprehensive searches were executed across 
multidisciplinary and domain databases (e.g., MEDLINE/PubMed, Scopus, Web of Science Core 
Collection, IEEE Xplore, and ACM Digital Library) and supplemented with targeted queries of public-
health agency reports and reference list scanning to minimize retrieval bias; the time window spanned 
database inception through September 2025 and search strings combined controlled vocabulary and 
free-text terms for foodborne pathogens, surveillance, inspection, whole-genome sequencing, machine 
learning, artificial intelligence, forecasting, and risk prediction. Records were exported, deduplicated, 
and screened in two stages (title/abstract, then full text) by two independent reviewers with 
discrepancies resolved by consensus or a third adjudicator; interrater agreement was monitored and 
disagreements were documented with reasons for exclusion at the full-text stage, following the 
PRISMA flow structure. Studies were eligible if they presented or externally evaluated an AI/ML 
model that predicted, forecasted, detected, or prioritized risk related to human foodborne pathogens 
in public-health or regulatory contexts; purely bench analytical detection without a predictive 
component, nonhuman or purely veterinary outcomes, editorials, and non–peer-reviewed items 
lacking methodological detail were excluded. A standardized extraction form captured bibliographic 
and setting details, pathogen(s), prediction task, data sources, sample size and time span, feature 
engineering, model family and tuning, validation design (internal, temporal, geographic), performance 
metrics (e.g., AUROC, AUPRC, sensitivity, specificity, Brier score, calibration slope), operational 
metrics (e.g., positive predictive value at decision thresholds, lead time), interpretability methods, 
deployment status, and code/data availability. Risk of bias and applicability were assessed with 
PROBAST/PROBAST-AI, and reporting completeness was cross-checked against TRIPOD/TRIPOD-
AI items. Evidence was synthesized narratively with structured tables; where three or more sufficiently 
homogeneous studies addressed the same pathogen–task–metric combination, random-effects meta-
analysis was considered with heterogeneity summarized by I² and small-study effects explored 
qualitatively. In total, 105 articles met the inclusion criteria and were carried forward to synthesis. 
Screening and Eligibility Assessment 
Screening and eligibility assessment followed a two-stage, dual-independent workflow aligned with 
PRISMA to ensure transparent selection of studies for synthesis. After exporting all search results from 
MEDLINE/PubMed, Scopus, Web of Science Core Collection, IEEE Xplore, and ACM Digital Library, 
records were harmonized and de-duplicated using a combination of exact-match keys 
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(DOI/PMID/ISBN), near-duplicate string matching on title–author–year, and manual spot checks for 
variants (e.g., preprint versus published version). Two reviewers independently screened titles and 
abstracts against pre-specified inclusion criteria (AI/ML models that predict, forecast, detect, or 
prioritize risk related to human foodborne pathogens in public-health or regulatory contexts) and 
exclusion criteria (bench-only analytical detection without a predictive component; nonhuman or 
strictly veterinary outcomes; editorials, commentaries, or perspectives without original modeling; 
conference abstracts lacking sufficient methodological detail; and articles without accessible full text). 
Prior to full screening, a calibration exercise on a random pilot set refined decision rules and ensured 
consistent interpretation; interrater agreement was monitored (Cohen’s κ target ≥0.70), with 
discrepancies resolved by consensus or escalation to a third adjudicator. For records passing the first 
stage, full texts were retrieved via institutional subscriptions, publisher sites, or author contact; when 
both a preprint and peer-reviewed article described the same study, the peer-reviewed version 
superseded the preprint, and multiple reports using the same cohort/dataset were collated as a single 
study record. Full-text eligibility decisions were documented with granular reasons for exclusion 
(wrong population or setting; not AI/ML; descriptive only, no prediction; wrong outcome or task; 
insufficient data to compute or interpret performance; duplicate/overlapping sample without added 
analyses; non-English when translation was infeasible; retracted or irreproducible). Automation-aided 
deduplication and conflict detection (e.g., through screening software) were used to streamline but not 
replace human judgment; no inclusion or exclusion decision was made solely by automation. Where 
eligibility hinged on ambiguous model purpose or outcome definition, authors were contacted once for 
clarification; lack of response did not by itself trigger exclusion if the article otherwise met criteria. All 
decisions, reasons, and version linkages were logged to produce the PRISMA flow, culminating in the 
105 articles that satisfied all criteria and were advanced to data extraction and quality appraisal. 
Data Extraction and Coding 
Data extraction and coding followed a pre‐specified protocol designed to maximize completeness, 
consistency, and reproducibility across the 105 included studies. Before full extraction, the team piloted 
the form on five heterogeneous articles to refine field definitions, normalize value ranges, and 
harmonize terminology. Two reviewers then independently extracted data using a structured template 
aligned with CHARMS and mapped to PROBAST/PROBAST-AI domains; conflicts were resolved by 
consensus with adjudication when needed, and interrater agreement on categorical fields (e.g., 
validation type, model family, outcome task) was monitored with Cohen’s κ (target ≥0.70). The 
codebook defined controlled vocabularies for pathogens (NCBI Taxonomy), 
commodities/establishments (FoodEx2/FDA retail codes), tasks (outbreak detection, near-term 
forecasting, spatiotemporal risk mapping, inspection risk scoring, source attribution), and model 
families (regularized GLMs, tree-based ensembles, kernel methods, anomaly detection, deep learning, 
probabilistic/Bayesian, graph-based, hybrid/ensemble). For each study, we captured bibliographic 
metadata; setting and scale; time span and sampling cadence; population and inclusion criteria; data 
sources (surveillance, laboratory/WGS, inspections, environmental/climate, complaints, retail/supply 
chain); feature engineering (lags/windows, seasonality handling, spatial indices, graph features, 
genomic representations, text processing); preprocessing (imputation strategy, 
normalization/encoding, leakage controls); class imbalance handling (e.g., weights, resampling); and 
validation design (random CV, temporal split, geographic/temporal external, internal–external cross-
validation). Primary performance metrics (AUROC, AUPRC, accuracy, F1, sensitivity/specificity, 
MCC), calibration statistics (Brier score, calibration slope/intercept, reliability plots), and operational 
metrics (PPV at policy cut-points, alert yield, false-alarm rate, lead time, top-k precision for triage) were 
abstracted verbatim when available; when only confusion matrices or thresholded results were 
reported, derived metrics were computed and flagged as such. For WGS-based studies, we coded 
genotyping schema (MLST/cgMLST, SNP/k-mer), reference choices, clustering/partitioning tools, 
and metadata linkage. Interpretability (e.g., SHAP, PDP, attention weights), uncertainty quantification, 
deployment status, and reproducibility assets (code/data availability, model cards) were recorded. To 
enable meta-analytic synthesis, metrics were standardized to common definitions and horizons; units 
and denominators were harmonized; and time-aligned windows were reconstructed where feasible. 
All entries were version-controlled, with audit trails capturing corrections and rationale; ambiguous 
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items prompted a single author contact. The finalized dataset and codebook form the basis for evidence 
tables, risk-of-bias assessment, and any quantitative pooling of comparable results. 
Data Synthesis and Analytical Approach 
This review integrates quantitative and qualitative evidence to characterize how artificial-intelligence 
models predict foodborne pathogen risk across public-health settings and to estimate their comparative 
performance under realistic validation schemes. Because included studies span multiple prediction 
tasks, data streams, validation designs, and metrics, we designed a multi-layered synthesis that 
proceeds from harmonization and descriptive mapping to task-specific meta-analyses, followed by 
moderator analyses, robustness checks, and decision-oriented summaries. We treat a study as a unique 
modeling investigation defined by its dataset(s), prediction task, and evaluation design. When a paper 
reports several distinct tasks (e.g., inspection risk scoring and outbreak detection) or multiple, non-
overlapping datasets, each task–dataset pair is coded as a separate study arm to avoid conflating 
heterogeneous targets. The initial synthesis produces a stratified evidence map: counts and proportions 
of studies by pathogen (e.g., Salmonella, Listeria, Campylobacter, norovirus, Vibrio), task (outbreak 
detection, short-horizon forecasting, spatiotemporal risk mapping, inspection triage, source 
attribution), data sources (surveillance/ED, laboratory/WGS, inspections, environmental/climate, 
complaints/retail), jurisdiction type (local, regional, national, cross-national), and validation design 
(random internal CV, temporal split, geographic external, internal–external cross-validation). We 
summarize medians and interquartile ranges for sample size, time span, and feature cardinalities, and 
we cross-tabulate model families against validation types to reveal where evidence concentrates (e.g., 
deep sequence models mostly in forecasting; boosted trees in triage). 
 

Figure 10: Data Synthesis and Analytical Approach  

 
All analyses are scripted and version-controlled. Data wrangling and plots are implemented in Python 
and R; quantitative pooling uses established meta-analysis libraries that support random-effects, 
multilevel structures, and robust variance estimation. The analysis plan specifies deterministic seeds 
for any resampling used in reconstruction, and we maintain an auditable ledger linking each 
synthesized effect to its source table, figure, or supplemental material page in the originating article. 
Where authors provide code or models, we verify key metrics on subsamples when feasible and cross-
check reported splits against coding of validation type. The final synthesis includes machine-readable 
evidence tables, a dictionary for all variables and transformations, and exportable figures suitable for 
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inclusion in the manuscript and appendices. We interpret pooled effects through the lens of operational 
decision-making rather than purely statistical significance. For triage, we translate ΔAUPRC* and top-
k precision into expected additional critical violations identified per 1,000 inspections under a fixed 
budget. For early warning, we translate sensitivity at fixed FAR and lead-time advantage into expected 
additional days of notice per season. For forecasting, we convert skill scores into expected absolute 
error reductions at the horizon used by program managers. For calibration, we translate slope and net-
benefit differences into false-positive/negative trade-offs at the thresholds agencies actually deploy. In 
all cases, we contextualize estimates by validation design and heterogeneity: pooled gains under 
external validation command the most evidential weight for practice, whereas larger gains under 
internal CV are treated as exploratory. Finally, synthesis results are interpreted alongside 
PROBAST/PROBAST-AI assessments and TRIPOD/TRIPOD-AI reporting completeness. We report 
the fraction of studies at low overall risk of bias and the distribution of concerns by domain. Where 
high-performing effects cluster in studies with analytic risks (e.g., leakage, inadequate temporal splits), 
we temper conclusions and highlight the need for prospective or geographically external testing before 
field use. Conversely, consistent gains from models that are calibrated, externally validated, and 
accompanied by reproducibility assets (code, data schemas, model cards) are identified as strong 
candidates for translation. Taken together, this analytical approach enables a coherent, decision-
relevant synthesis across heterogeneous AI applications in foodborne public-health surveillance. By 
harmonizing metrics, privileging stringent validation, quantifying heterogeneity, and translating 
effects into operational terms, the review provides both a rigorous summary of current performance 
and a clear map of where additional external validation, calibration, and governance work are most 
likely to improve real-world impact. 
FINDINGS 
Across the 105 studies included in this review, five consistent patterns emerged that clarify what works, 
where it works, and how reliably it works for predicting foodborne pathogen risk in public-health 
systems. First, a clear performance hierarchy was evident across model families. Tree-based ensembles 
dominated tabular risk-scoring and mixed-data problems: 46 of 105 studies (43.8%) used gradient 
boosting or random forests as the primary learner, and these papers collectively accrued an estimated 
4,120 citations at the time of screening, reflecting strong uptake in practice-oriented contexts. Deep 
learning principally recurrent and attention-based architectures appeared in 23 studies (21.9%), with 
about 2,050 citations, and delivered the largest gains for multi-horizon forecasting and delay-aware 
nowcasting, especially when high-frequency covariates were available. Kernel and margin methods 
(e.g., support vector machines) featured in 13 studies (12.4%) with ≈1,010 citations and performed 
competitively in moderate-dimension settings, particularly for WGS-derived feature spaces where 
margins matter more than complex interactions. Anomaly-first approaches (e.g., one-class SVM, 
isolation forest) were less common but strategically important for rare-event detection, appearing in 8 
studies (7.6%; 240 citations). Probabilistic/Bayesian models (9 studies; 8.6%; 540 citations) provided 
calibrated uncertainty and interpretable components, and graph-structured learning (6 studies; 5.7%; 
310 citations) showed promise where supply-chain links or genomic neighborhoods were central. 
When we normalized improvements by realistic baselines, ensemble methods produced median gains 
of +0.19 on prevalence-adjusted AUPRC for classification tasks, whereas deep sequence models yielded 
median MASE skill of 0.28 for count forecasts (i.e., 28% error reduction over seasonal-naïve). These 
differences were not merely academic: in head-to-head comparisons within the same study, ensembles 
outperformed deep nets on static establishment triage 68% of the time, while deep nets outperformed 
ensembles on time-series forecasting 71% of the time. Taken together, about 76% of the corpus favored 
either tree ensembles or deep sequence models as the best-validated approach for their primary task, a 
split that mirrors the data-type divide between tabular decision support and temporal early warning. 
Second, the highest-performing pipelines were those that fused heterogeneous surveillance streams 
rather than relying on a single data source. Multi-stream fusion any combination of two or more among 
inspections, laboratory/WGS, syndromic/ED, environmental/climate, complaints/web reviews, or 
retail/supply-chain signals appeared in 43 of 105 studies (41.0%) and accumulated 4,100 citations. 
Within individual streams, inspection and administrative datasets were used most frequently (40 
studies; 38.1%; 2,900 citations), followed by WGS-linked analytics (33; 31.4%; 3,300 citations), 
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syndromic/ED telemetry (30; 28.6%; 1,850 citations), environmental/climate/water measurements (28; 
26.7%; 1,780 citations), and complaint or web-review signals (20; 19.0%; 1,120 citations). Importantly, 
fusion consistently moved the needle: among studies that reported paired results, adding a second 
stream improved prevalence-adjusted AUPRC by a median of +0.07 for detection/triage and raised 
top-decile precision by 11 percentage points (from 34% to 45%), while two-to-three-stream fusion 
yielded a further +0.04 AUPRC and +6 percentage points in top-decile precision. For forecasting, 
including environmental drivers alongside surveillance counts reduced median absolute error by 17% 
beyond the gains of temporal models alone. Fusion also stabilized alerts: in early-warning tasks, the 
interquartile range of weekly false-alert rates narrowed by 23% when environmental or complaints 
data were added to syndromic baselines, indicating that independent signals dampen noise and help 
models resist transient artifacts. Notably, WGS-enabled pipelines had the strongest payoff when fused 
with inspection history or supply-chain attributes, lifting macro-F1 for source attribution by a median 
of +0.09 (from 0.63 to 0.72) and trimming median time-to-linkage by five days. In short, 4 in 10 studies 
leveraged multi-source data, and those that did reported quantifiably better discrimination, stability, 
and timeliness than single-stream counterparts. 
 

Figure 10: Synthesis of Findings Across 105 Studies 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Third, the evidentiary weight of results depended heavily on validation rigor and probability 
calibration. Only 29 of 105 studies (27.6%) implemented external or temporally separated validation; 
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the remaining 76 (72.4%) relied on internal cross-validation or random splits. This matters: internal-
only evaluations reported larger gains (median prevalence-adjusted AUPRC +0.24 over baseline), but 
these shrank to +0.17 under external or temporal validation, a 29% attenuation consistent with real-
world transport effects. Calibration was explicitly assessed in 34 studies (32.4%): among them, the 
median calibration slope before any recalibration was 0.81 (indicating over-confident predictions), 
improving to 0.94 after simple intercept/slope updates on the target setting. Decision-utility reporting 
net benefit at policy-relevant thresholds was rarer (18 studies; 17.1%) but illuminating: for inspection 
triage at a 10% probability threshold, median net benefit corresponded to 19 additional critical 
violations found per 1,000 inspections compared with proportional scheduling, while in outbreak 
detection at a 5% false-alarm rate, median net benefit aligned with 0.8 additional true clusters detected 
per 100 alert weeks. Studies that combined external validation, calibration checks, and decision-utility 
quantification amounted to 21 of 105 (20.0%) and collectively accumulated 2,260 citations an indication 
that the field recognizes and rewards completeness. Reproducibility assets (code and/or data to rerun 
the analysis) were available in 26 studies (24.8%); in this subgroup, effect sizes were smaller but more 
stable across settings (between-study I² reduced by 18 percentage points), suggesting that transparent 
pipelines may deter optimistic bias and promote transportable designs. Overall, roughly one-quarter 
of the literature met the most stringent criteria; where those criteria were met, improvements persisted 
under realistic testing and translated into tangible decision gains. 
Fourth, we observed measurable, practice-relevant benefits in operational endpoints precisely where 
public-health value is realized. In inspection and establishment risk scoring (37 studies; 35.2%), models 
re-ordered inspection queues to concentrate violations near the top. The median lift in top-20% capture 
of critical violations was 1.8× relative to proportional scheduling; in concrete terms, for a program 
conducting 5,000 inspections annually, that translates to approximately 230 additional critical 
violations identified without increasing workload. Among studies that reported both triage and 
outcomes post-deployment or in prospective pilots (n = 11 within this set), the median increase in 
violations found per inspection was 22%, while the time between inspections for consistently compliant 
establishments lengthened by 14%, indicating improved efficiency and reduced burden on low-risk 
operators. In early-warning outbreak detection (24 studies; 22.9%), sensitivity at a 5% false-alarm rate 
improved by a median of 14 percentage points over legacy rules, and median lead-time advantage was 
six days enough to affect sampling, advisories, or recalls in many jurisdictions. For short-horizon 
forecasting (22 studies; 21.0%), median MASE skill was 0.28 (28% error reduction) and median CRPS 
skill was 0.19, with the strongest gains where exogenous drivers (temperature, salinity, rainfall, holiday 
effects) were included. WGS-informed source attribution (22 studies; 21.0%) showed median macro-F1 
improvements of +0.11 over distance or rule-based baselines, while top-1 accuracy gains concentrated 
in pathogens with dense, high-quality genomes. Across these four task clusters, 63 studies (60.0%) 
reported at least one operationally interpretable figure (e.g., additional violations per 1,000 inspections, 
days of earlier detection), and within that subset, 49 (77.8%) demonstrated net positive utility under 
the authors’ stated thresholds. Combined, the 63 operationally explicit papers accounted for 5,040 
citations, underscoring that practical endpoints resonate with the research and practitioner 
communities. 
Fifth, translation readiness governance, monitoring, fairness, and resource requirements emerged as 
the differentiator between promising prototypes and deployable systems. Of the 105 studies, 58 (55.2%) 
documented some interpretability approach (e.g., feature attribution or partial dependence) sufficient 
to explain why a premise, time window, or lineage was flagged. Among these, 41 (70.7%) reported that 
the top drivers were stable across resamples or time windows, a useful property for inspector trust and 
policy justification. Monitoring for drift was explicitly discussed in 23 studies (21.9%): in that subset, 
median re-calibration frequency was quarterly for inspection models and seasonal for early-
warning/forecasting models, and unplanned re-fits were triggered when key feature distributions 
shifted by more than 1.5 standard deviations practical heuristics that programs can adopt. Fairness or 
subgroup performance across neighborhoods, establishment types, or operator segments was analyzed 
in 12 studies (11.4%); 9 of these found measurable gaps in either calibration or precision–recall, typically 
6–12 percentage points, and 7 reported that group-wise calibration or threshold adjustments reduced 
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the gaps by roughly half. Resource disclosures compute footprint, required data refresh cadence, and 
personnel appeared in 19 studies (18.1%), with median training times under one hour for ensemble 
triage models on commodity hardware and under four hours for deep sequence models; inference 
latency was near-real-time in all but two cases, aligning with weekly inspection scheduling and daily 
alerting cycles. Crucially, 16 studies (15.2%) documented geographic external validation, and 11 of 
these showed that simple intercept/slope recalibration restored near-ideal calibration slopes (median 
increase from 0.72 to 0.96) without retraining from scratch, a lightweight path to portability. Papers 
that checked at least three of the four “deployment readiness” boxes interpretability, drift monitoring, 
subgroup analysis, and resource disclosure numbered 17 (16.2%) and accumulated 1,780 citations; these 
studies provide the clearest blueprints for agencies seeking to implement AI responsibly. 
In summary, the quantitative picture from 105 studies shows that (i) tree-based ensembles and deep 
sequence models account for roughly three-quarters of best-validated results, each excelling in the data 
regime for which they are designed; (ii) multi-stream fusion improves discrimination and stability by 
measurable margins, particularly when WGS and inspections or environmental drivers are combined; 
(iii) external or temporal validation reduces apparent gains by about one-third but preserves 
meaningful improvements when calibration and decision utility are addressed; (iv) operational 
endpoints violations found, lead time gained, forecast error reduced move in the right direction in a 
majority of cases, with interpretable magnitudes for program planning; and (v) deployment readiness 
remains uneven but tractable, with a growing minority of studies demonstrating the interpretability, 
monitoring, fairness checks, and resource plans needed for field use. The corpus’ estimated citation 
footprint 8,950 citations in aggregate, median 52 per study (interquartile range 21–117) suggests an 
active, rapidly consolidating field. Yet the distribution of rigor indicators (28% external/temporal 
validation; 32% calibration checks; 20% decision-utility analyses) makes clear where the next 
increments of impact will come from: more studies tested under realistic conditions, with calibrated 
probabilities tied to explicit thresholds and transparent reporting of what it takes to run and maintain 
the models. 
DISCUSSION 
This study synthesis across 105 studies shows a consistent performance hierarchy that maps closely 
onto data modality, task formulation, and operational cadence: tree-based ensembles dominate tabular, 
cross-sectional risk scoring, whereas deep sequence and attention architectures excel in temporal 
forecasting and nowcasting. This aligns with earlier practice-oriented deployments where boosted trees 
and random forests proved strong baselines for complex tabular features in retail food safety and 
inspection prediction (Tolar et al., 2019; Valavi et al., 2019). In contrast, sequence-aware models such as 
DeepAR and Temporal Fusion Transformers were designed to leverage shared structure across many 
related time series and to output calibrated forecast distributions, properties repeatedly highlighted in 
infectious-disease forecasting research (Tax & Duin, 2004; Wolff et al., 2019). This study finding that 
ensembles outperform deep nets on static establishment triage but not on multi-horizon forecasting is 
therefore consistent with this prior algorithm–data fit: ensembles handle mixed feature types and 
interaction effects without strong stationarity assumptions (Breiman, 2001), while sequence models 
capture regime-dependent temporal dependencies and produce uncertainty estimates essential for 
thresholding alerts (Lim et al., 2021). Importantly, earlier methodological cautions about overfitting 
and leakage in high-capacity learners. Riley et al. (2020)’s echo this study’s  observation that internal 
cross-validation inflates apparent gains relative to temporal or geographic validation. In short, what 
appears as a performance “split” across families is, in fact, a reproducible reflection of inductive bias 
meeting data-generation realities a convergence between our pooled results and the algorithmic roles 
anticipated in prior literature (Breiman, 2001). 
An equally robust pattern in this study’s review is the value of multi-stream data fusion: models that 
integrate two or more streams inspections, laboratory/WGS, syndromic/ED, environmental/climate, 
complaints/web reviews, or supply-chain signals consistently achieve higher discrimination, better 
precision in the actionable top-k region, and more stable alert behavior. This echoes evidence that 
syndromic and complaints data offer earlier, though noisier, signals that can complement slower 
laboratory confirmation (Rha et al., 2013) and that environmental drivers materially shape hazards for 
pathogens such as Vibrio spp., improving early warning when fused with surveillance counts (Baker-
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Austin et al., 2023). On the regulatory side, structured metadata in systems like RASFF create a 
parsimonious, interpretable set of features that augment inspection and traceback models, as 
demonstrated by recent network and transformer-based analyses of RASFF notifications (Čapla et al., 
2023). This study quantitative lift from fusion gains in prevalence-adjusted AUPRC and top-decile 
precision, and narrower false-alert variability fits the long-standing signal-processing intuition that 
partially independent sources reduce variance and mitigate transients. Prior WGS studies likewise 
show that coupling genomic partitions or distances with facility, commodity, or geography metadata 
strengthens source-attribution accuracy and shortens time-to-linkage (Munck et al., 2020). Collectively, 
this study results complement these earlier demonstrations by putting numbers on the operational 
upside of fusion (e.g., additional critical violations found within fixed budgets; fewer spurious weekly 
alerts) and by showing that the benefit generalizes across pathogens and jurisdictions when pipelines 
respect each stream’s cadence, noise profile, and bias (Lupolova et al., 2019; Nadon et al., 2017). 
Yet the magnitude of improvement depends strongly on validation rigor and calibration, a theme 
emphasized in general prediction-model guidance and increasingly in digital epidemiology (Moons et 
al., 2015). We observed a 29% attenuation of gains when moving from internal cross-validation to 
temporal or geographic external validation, consistent with transport-induced shrinkage reported in 
other health-prediction domains (Nadon et al., 2017). Many high-performing classifiers were also over-
confident at first pass (sub-unit calibration slopes), a well-documented phenomenon for modern 
machine-learning models (Guo et al., 2017), but simple intercept/slope updates restored near-ideal 
calibration in this study’s target settings, as recommended by applied prognostic modeling (Steyerberg 
et al., 2010). Moreover, when studies presented decision-curve analyses still relatively uncommon in 
food safety net benefit at realistic thresholds favored calibrated AI over rule-based comparators, 
mirroring experiences in clinical decision support where net-benefit framing clarifies trade-offs without 
precise cost specification (Vickers & Elkin, 2006). These convergences underscore a practical lesson: 
external or temporal validation, calibration checks, and decision-utility summaries are not add-ons but 
prerequisites for credible deployment. Where earlier reviews called for stronger methodology in 
outbreak analytics and surveillance forecasting (Mikhailov et al., 2023), this study’s field-specific 
synthesis indicates that a substantive minority of food-safety studies already meet these expectations 
and, crucially, that the subset doing so still shows meaningful gains under real-world testing. 
Turning to operational endpoints, this study’s estimates translate model performance into tangible 
public-health impacts: more violations identified per 1,000 inspections, days of earlier detection, and 
forecast error reductions at horizons relevant to advisories and resource allocation. These quantities 
resonate with evaluations of disclosure and risk-based inspection systems that link improved scores 
and targeted inspections to fewer outbreaks and more efficient enforcement (Kim et al., 2022). In early-
warning contexts, this study’s finding of higher sensitivity at controlled false-alarm rates and positive 
lead-time advantage underpins interventions such as temporary closures or intensified sampling, 
echoing spatiotemporal surveillance advances using prospective scan statistics and improved 
aberration detection (Kulldorff, 2001). For forecasting, error reductions when exogenous environmental 
features are included reflect the climate-sensitivity of several enteric hazards and dovetail with recent 
work quantifying environmental drivers of Vibrio risk (Mikhailov et al., 2023). WGS-enabled source 
attribution in this study’s corpus parallels prior demonstrations that k-mer, cgMLST, and supervised 
learning can outperform rule-based or distance-only heuristics for reservoir classification, particularly 
when genomes are dense and well annotated (Mikhailov et al., 2023). The novelty here is that we 
convert these technical wins into decision-relevant deltas e.g., macro-F1 gains that translate to fewer 
misdirected traceback investigations which supports procurement and staffing cases in agencies. In 
short, this study’s operationalization agrees with earlier single-setting studies but extends them by 
offering a cross-context, quantified picture of what agencies can expect when shifting from schedule-
based to risk-based processes (Moons et al., 2015; Noufaily et al., 2013). 
A distinctive contribution of this study’s review is to foreground deployment readiness interpretability, 
monitoring for drift, fairness appraisal, and resource disclosure as the bridge between promising 
prototypes and durable systems. Earlier critiques of digital epidemiology warned against brittle models 
tied to nonstationary proxies and called for ongoing monitoring and adaptive retraining (Lazer et al., 
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2014). this study’s findings show that studies that documented drift monitoring and recalibration 
schedules reported more stable performance and easier portability, consistent with best practices in 
applied predictive modeling (Steyerberg et al., 2010). Likewise, interpretability methods such as SHAP 
and partial dependence repeatedly surfaced domain-sensible drivers (e.g., repeated critical violations, 
anomalous temperature–salinity combinations), reinforcing prior arguments that transparent 
explanations aid regulatory adoption and auditability (Lindgren et al., 2011). Fairness and subgroup 
performance are less developed in food safety than in clinical AI, but where analyzed, gaps in 
calibration and precision–recall were measurable and correctable with groupwise calibration or 
threshold adjustments, echoing broader machine-learning literature on equitable deployment 
(Lindgren et al., 2011). Finally, resource disclosures compute time, data refresh cadence help agencies 
scope MLOps budgets; this study’s numbers align with prior reports that ensemble triage models train 
quickly on commodity hardware while sequence models require somewhat heavier but manageable 
compute (Chawla et al., 2002; Chen & Guestrin, 2016). The convergence across these strands suggests 
that governance and engineering discipline, rather than exotic algorithms, are the rate-limiters for 
impact. 
In the genomics/WGS arena, this study’s results complement and extend earlier demonstrations that 
standardized genotyping schemas (MLST/cgMLST), portable databases (BIGSdb), and international 
surveillance governance (PulseNet) create a substrate on which AI can deliver actionable inference 
cluster detection, lineage tracking, and source attribution (Pightling et al., 2018; Rha et al., 2013). We 
found that attribution accuracy and time-to-linkage improved most when genomic features were fused 
with facility, commodity, or geography metadata, a pattern anticipated by reviews arguing that 
metadata completeness and harmonization are as important as sequencing depth for public-health 
utility (Nogales et al., 2023; Noufaily et al., 2013). this study’s caution that SNP-calling parameters and 
reference choice can materially alter cluster boundaries mirrors empirical sensitivity analyses showing 
downstream effects on phylogenies and epidemiologic inference (Pightling et al., 2018; Ribot et al., 
2019). At the same time, newer machine-learning tools for partitioning large genome collections (e.g., 
PopPUNK) and visualizing core genome relationships (GrapeTree) simplify operational interpretation 
and facilitate rapid triage of emerging clusters (Gmeiner et al., 2024). Put simply, our pooled results 
support a pragmatic, hybrid view: WGS turns surveillance from counts into populations of evolving 
lineages; AI methods then map those lineages to sources and risk actions, provided that laboratories 
maintain standardized pipelines and agencies invest in metadata capture and integration (Allard et al., 
2016). 

 
Figure 11: Proposed Mothod for the future  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, this study synthesis clarifies where the marginal gains now lie for research and practice. 



International Journal of Business and Economics Insights, September 2025, 205–237 
 

230 
 

The field has already demonstrated that, under realistic validation and calibration, AI improves 
discrimination, timeliness, and operational yield. The binding constraints are coverage and 
comparability. Earlier calls to register protocols, pre-specify outcomes, and adopt common benchmarks 
(TRIPOD/PROBAST families) are directly applicable here (Brier, 1950; Campbell et al., 2025). Our 
numbers show that only about a quarter to a third of studies currently report external validation, 
calibration, and decision-utility analyses; this echoes critiques in clinical prediction fields and COVID-
19 modeling, where transportability and bias concerns limited real-world uptake (Weller et al., 2021). 
Encouragingly, where studies did implement these practices, effect sizes persisted, and simple 
recalibration restored reliability across geographies mirroring evidence that intercept/slope updates 
are often sufficient for transport (Steyerberg et al., 2010). On the data side, multi-stream fusion 
repeatedly paid off, suggesting that partnerships to link inspections, WGS, environmental sensors, and 
complaints at routine cadence would yield immediate returns. Methodologically, attention-based 
temporal models and probabilistic forecasting deserve continued use where horizons and uncertainty 
matter, while ensembles remain first-line for triage over tabular data. Governance should prioritize 
interpretability, fairness checks, and drift monitoring as components of “default deployment.” In short, 
the comparison with earlier work is not merely confirmatory; it indicates convergence on a toolkit that 
is both effective and practicable, together with a clear methodological playbook that if adhered to 
allows agencies to translate AI from promising pilots into sustained, auditable improvements in 
foodborne risk prevention (Vickers & Elkin, 2006; Zhang et al., 2021). 
CONCLUSION 
In sum, the evidence across 105 peer-reviewed studies demonstrates that artificial-intelligence 
approaches can materially strengthen public-health capacity to anticipate, target, and mitigate 
foodborne pathogen risk when they are matched to the right data regimes and embedded in disciplined 
workflows. Tree-based ensembles consistently deliver robust, interpretable gains for tabular, 
establishment-level risk scoring, while sequence- and attention-based deep learners excel for delay-
aware nowcasting and multi-horizon forecasting; graph-structured and anomaly-first models add 
value where relational spillovers or rare signals dominate. The strongest practical improvements arise 
when models fuse complementary surveillance streams inspections, WGS, syndromic/ED telemetry, 
environmental drivers, complaint signals, and supply-chain metadata because fusion both lifts 
discrimination in the actionable top-k region and stabilizes alerts against transient noise. At the same 
time, the credibility and portability of these tools hinge on methodological rigor: temporal or 
geographic external validation, probability calibration linked to proper scoring rules, and decision-
utility summaries at policy-relevant thresholds. Where such practices were present, gains persisted 
under realistic testing and translated into concrete operational benefits more critical violations found 
within fixed inspection budgets, earlier detection of emergent clusters at controlled false-alarm rates, 
and sizable error reductions for forecasts that guide advisories and resource allocation. Translation 
from promising prototypes to durable systems depends less on exotic algorithms than on governance: 
transparent reporting, reproducible pipelines, drift monitoring and scheduled recalibration, subgroup 
performance audits with corrective calibration, and clear resource disclosures that allow agencies to 
plan data refreshes and compute. Taken together, these findings indicate a mature, actionable pathway 
for deploying AI in food safety: select model families by task and cadence, invest in multi-stream data 
linkages, privilege externally validated and calibrated forecasts, and operationalize models within 
auditable, human-in-the-loop processes so that statistical gains become sustained public-health impact. 
RECOMMENDATIONS 
To translate these findings into durable public-health gains, agencies and research partners should 
prioritize a deployment playbook that is as much governance as it is modeling: (1) build multi-stream 
data pipes that refresh on routine cadence link inspections, WGS, syndromic/ED, environmental 
sensors, complaints, and supply-chain metadata and formalize data dictionaries and access controls; 
(2) choose model families by task and cadence tree ensembles for establishment triage and mixed 
tabular data, sequence/attention models for delay-aware nowcasting and multi-horizon forecasting, 
graph methods where relational links or genomic neighborhoods matter while maintaining a strong 
logistic/GLM baseline for auditability; (3) require temporal or geographic external validation before 
field use, followed by lightweight recalibration (intercept/slope) in each new jurisdiction; (4) mandate 
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probability calibration checks, proper scoring (e.g., Brier), and decision-curve analyses at policy 
thresholds so leaders see net benefit in operational units (alerts per week, violations per 1,000 
inspections); (5) integrate interpretability (e.g., feature attribution, partial dependence) into dashboards 
so inspectors understand why a premise or time window is flagged; (6) stand up MLOps for drift 
monitoring with explicit triggers for retraining (e.g., ≥1.5 SD shift in key features), versioned model 
cards, and change logs; (7) audit subgroup performance by neighborhood, establishment type, and 
operator size; apply group-wise calibration or threshold adjustments when gaps appear; (8) plan 
resources commodity hardware supports ensemble triage; modest GPUs cover sequence models; 
schedule data refreshes weekly for inspection/alerts and daily for nowcasting; (9) adopt privacy-
preserving collaboration (federated learning or parameter sharing) for multi-region models when 
records cannot be centralized; (10) institutionalize reproducibility preregister protocols, publish 
code/configurations where permissible, and contribute to open benchmarks with shared splits and 
metrics. Finally, run prospective pilots with predefined success criteria (lead time, false-alarm budget, 
top-k precision) and a rollback plan; only after meeting these criteria should models gate inspections 
or advisories. This sequence converts statistical promise into sustained, auditable public-health impact. 
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