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Abstract 
Hybrid manufacturing, which integrates additive and subtractive processes within unified workflows, has 
emerged as a transformative paradigm in advanced production systems, yet it continues to face persistent 
challenges in achieving stable and predictable quality outcomes. This review critically examines how 
industrial engineering approaches are being applied to overcome these challenges, focusing on the 
implementation strategies that enable robust quality control in hybrid manufacturing environments. 
Drawing on an extensive analysis of 128 peer-reviewed articles collectively amassing over 12,000 citations, 
this study synthesizes evidence across five major thematic areas: statistical process control and design of 
experiments for process stabilization, multi-sensor in-situ monitoring and real-time feedback for defect 
prevention, digital twin–guided planning for predictive control, data-driven analytics and process mining 
for continuous improvement, and organizational enablers such as cross-functional teams, structured 
training, and layered audits for sustained performance. The findings reveal that when these industrial 
engineering methods are integrated into cohesive, closed-loop architectures, they deliver measurable 
improvements in process capability indices, reduce scrap and rework rates, enhance first-pass yield, and 
shorten time-to-stability after new product introduction. In contrast to earlier assumptions that hybrid 
manufacturing was too variable for conventional quality tools, the evidence demonstrates that structured 
industrial engineering frameworks now serve as the backbone of quality assurance in this domain. However, 
the review also identifies ongoing challenges, including data interoperability barriers, cross-domain 
calibration gaps, and the need for graded human-in-the-loop oversight to mitigate edge-case failures. Overall, 
this study highlights a decisive shift in hybrid manufacturing quality control from reactive, post-process 
inspection toward proactive, data-driven, and organizationally embedded systems, positioning industrial 
engineering not merely as a supplementary toolkit but as the central framework for scaling hybrid 
manufacturing into a reliable, cost-effective, and globally competitive production strategy. 
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INTRODUCTION 
Hybrid manufacturing, understood as the systematic integration of additive and subtractive processes 
within a single production environment, requires a fundamental rethinking of how quality control is 
defined, executed, and maintained (Butt, 2020). From an industrial engineering perspective, quality 
control in such systems is not limited to detecting defects but extends to managing the consistency of 
processes, aligning product attributes with requirements, and ensuring compliance across distributed 
supply chains. Quality in hybrid contexts encompasses dimensional precision, surface integrity, 
material consistency (Nyamuchiwa et al., 2023), and structural reliability of parts that often undergo 
sequential stages of additive deposition and precision machining. The international significance of 
these concepts is evident in global trade, where hybrid-manufactured components circulate across 
countries and industries such as aerospace, energy, and healthcare. Standardized definitions of quality, 
harmonized inspection protocols (Murdy et al., 2021), and cross-border recognition of process controls 
make quality control a global necessity rather than a local optimization. In this framework, industrial 
engineering methods—such as statistical process control, measurement systems analysis, experimental 
design, and robust process planning—provide the foundation for structuring quality practices in a 
manner that supports both national certification requirements and international interoperability. 
Hybrid manufacturing, with its promise of efficiency and customization, gains credibility only when 
underpinned by rigorous and universally understood quality definitions (Rettberg & Kraenzler, 2020). 
Central to the discussion is the concept of process alignment between additive and subtractive stages 
(Li et al., 2023). Additive processes create near-net geometries layer by layer, introducing thermal 
effects, residual stresses, and microstructural complexities that differ significantly from traditional bulk 
material. Subtractive processes then refine these geometries, demanding precise datum transfers and 
highly accurate fixturing to ensure that the machining stage does not compromise earlier additive 
layers (Yang et al., 2021). Industrial engineering approaches interpret this transition as a systems-level 
problem: one that requires modeling the interaction between additive variability and machining 
corrections to maintain tolerance chains. Quality control at this stage is not reactive but predictive, 
using data from sensors (Habeeb et al., 2023), probes, and inspection devices to anticipate deviations 
and intervene before they propagate into nonconformance. This integration is crucial for international 
operations, where a part might be additively manufactured in one country, machined in another, and 
assembled in a third. Without a coherent method for documenting, transferring, and verifying quality 
across each stage, global supply networks cannot operate with confidence. Thus, the definitional clarity 
and process-state alignment offered by industrial engineering become essential tools in global hybrid 
manufacturing (Wu et al., 2021). 
Implementation strategies for hybrid quality control are built around structured experimentation and 
process optimization. Industrial engineering emphasizes the use of design of experiments and robust 
design principles to understand how process parameters influence part characteristics (Solaimani et al., 
2021). In additive manufacturing, factors such as energy input, layer thickness, and scan strategies 
determine porosity, density, and dimensional fidelity. In machining, cutting speed, tool wear, and 
cooling strategies affect surface finish and subsurface integrity (Ley et al., 2021). When combined, these 
parameters create complex interactions that can only be understood through systematic 
experimentation. By incorporating noise factors, such as powder variability or fixture repositioning, 
robust design methodologies elevate process resilience (Qian et al., 2019), ensuring that systems 
perform consistently under real-world conditions. These strategies are not confined to laboratory 
studies but extend into industrial pilot lines and production cells, where repeatability and 
transferability of results are tested. The global relevance emerges when suppliers and partners across 
different regions replicate these experimental findings under harmonized standards, achieving a 
shared understanding of acceptable process windows and outcomes (Avram et al., 2022). In this way, 
structured implementation of experimentation evolves from a technical necessity into a strategic 
enabler of international collaboration. 
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Figure 1: Global Hybrid Manufacturing Quality Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Process control represents another cornerstone of hybrid quality management. Industrial engineering 
approaches advocate for continuous monitoring and feedback loops that connect real-time data with 
process adjustments (Buj-Corral et al., 2021; Kamrul & Tarek, 2022). Additive stages generate vast 
amounts of information, from melt pool signatures to thermal images, which can be translated into 
control charts and predictive models. Machining stages contribute probing data, surface 
measurements, and dimensional verifications that confirm or challenge earlier assumptions about 
additive accuracy (Sarafan et al., 2021). Together, these data streams are managed using statistical and 
model-based process control techniques, allowing engineers to detect trends, identify root causes, and 
take corrective actions. The result is not merely a stable process but an adaptive one, capable of 
accommodating inherent variability in powder lots (Mubashir & Abdul, 2022; Qu & Gong, 2021), 
environmental conditions, or machine states. On a global scale, such process control systems create a 
digital record of conformance that travels with each part through supply chains. These records serve 
as the basis for supplier audits, customer acceptance, and regulatory review (Parvanda & Kala, 2023), 
ensuring that hybrid-manufactured parts meet expectations no matter where they are produced or 
finished. 
Metrology integration forms a distinct layer of hybrid quality assurance. The challenge of inspecting 
hybrid parts lies in their complex geometries, internal features (Dritsas et al., 2018), and combined 
surface characteristics that may not be adequately captured by traditional methods alone. Industrial 
engineering solutions involve combining tactile, optical, and computed imaging techniques into a 
comprehensive measurement strategy. Measurement systems analysis ensures that these techniques 
provide consistent, reliable results across machines and sites (Frandsen et al., 2020; Muhammad & 
Kamrul, 2022). Fixturing strategies are treated as an extension of measurement systems, designed to 
minimize errors during re-clamping and datum transfer. Internationally, the importance of traceability 
cannot be overstated: measurements made in one country must be equivalent in credibility and 
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accuracy to those performed elsewhere, regardless of cultural or procedural differences (Verma et al., 
2023). By embedding metrology into both additive and subtractive stages, hybrid manufacturing 
creates acceptance criteria that recognize the interplay between material integrity and dimensional 
conformance. This ensures that global stakeholders can accept measurement data without the need for 
redundant inspections or disputes about reliability (Kadir et al., 2020; Reduanul & Shoeb, 2022). 
The relationship between design and quality is equally critical in hybrid contexts. Industrial 
engineering supports design-for-quality practices that anticipate manufacturing realities while 
maintaining functional requirements (Englert et al., 2022). Hybrid-specific considerations, such as build 
orientation, support structures, machining allowances, and tolerance stack-ups, are addressed early in 
the design process through cross-functional collaboration. Features that are difficult to inspect directly 
are linked to surrogate indicators or witness coupons (Urbanic & Saqib, 2019), providing confidence in 
areas where direct access is impossible. By aligning design intent with manufacturing capability, 
organizations reduce the risk of discovering quality issues late in the production cycle. This proactive 
integration extends beyond local operations (Bai et al., 2023), ensuring that designs created in one 
location can be realized and verified in another without ambiguity. In an international context, design-
for-quality becomes a universal language, allowing engineers across countries to interpret 
requirements consistently and execute manufacturing plans that converge on the same standards of 
excellence (Davis et al., 2022; Kumar & Zobayer, 2022). 
 

Figure 2: Hybrid Manufacturing Quality Control Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data governance and analytics represent the backbone of hybrid quality implementation at scale (Sadia 
& Shaiful, 2022; Yan et al., 2018). Hybrid systems generate high-volume, multi-source data that require 
disciplined management to ensure integrity, traceability, and accessibility. Industrial engineering 
practices establish schemas that align data from materials (Liu et al., 2023), builds, inspections, and 
reworks into a coherent framework linked to part identifiers. Predictive analytics models augment 
traditional statistical methods by identifying potential defects based on process signatures, enabling 
proactive decision-making. Importantly, these analytics are validated against empirical results, 
ensuring that predictions are aligned with real-world acceptance criteria (Zheng et al., 2021). 
Internationally, the challenge lies in accommodating diverse regulations around data security, privacy, 
and reporting. Industrial engineering solutions embed role-based access, audit trails, and structured 
reporting templates that meet the expectations of customers and regulators across different regions. 
This ensures that data not only supports internal decision-making but also satisfies external scrutiny in 
global transactions (Chinchanikar & Shaikh, 2022; Noor & Momena, 2022). 
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Finally, the success of hybrid quality control depends on workforce capability and governance 
structures (Manoharan & Haapala, 2019). Industrial engineering emphasizes systematic training, 
supplier development, and layered governance mechanisms to institutionalize best practices. 
Operators, engineers, and quality professionals are equipped with knowledge of statistical methods, 
measurement protocols, and hybrid-specific challenges (Hamrani et al., 2023), enabling them to 
interpret signals and act effectively. Supplier networks are developed through structured qualification 
processes that test capability under real production conditions, with ongoing surveillance to maintain 
standards. Governance artifacts such as control plans, audit protocols, and corrective action procedures 
create a disciplined environment where deviations are identified, escalated, and resolved. On an 
international scale (Lettori et al., 2020), these mechanisms ensure that quality practices are consistent 
across regions, enabling trust in complex supply chains. Escalation pathways are standardized, digital 
records are harmonized, and change management is formalized to maintain stability across 
organizational and national boundaries. Through these efforts, industrial engineering translates 
technical strategies into sustainable, globally credible systems for managing quality in hybrid 
manufacturing. 
LITERATURE REVIEW 
The literature review for industrial engineering approaches to quality control in hybrid manufacturing 
provides a critical foundation for understanding how this evolving field has been conceptualized, 
investigated, and applied (Sebbe et al., 2022). Hybrid manufacturing, as an integration of additive and 
subtractive processes, introduces a distinctive set of quality challenges that go beyond those faced in 
conventional manufacturing environments. While additive manufacturing brings opportunities for 
complexity and material efficiency, it simultaneously presents difficulties related to surface roughness, 
porosity, and dimensional accuracy (Korkmaz et al., 2022). Conversely, subtractive manufacturing 
delivers precision and surface finish but is highly dependent on datum transfer, fixturing strategies, 
and prior additive layer integrity. These interdependencies have motivated a growing body of research 
focused on implementing industrial engineering methodologies such as statistical process control, 
design of experiments, measurement system analysis, and robust design principles to manage quality 
across hybrid workflows (Dávila et al., 2020). The review will therefore examine how the literature has 
framed the intersection of industrial engineering and hybrid quality assurance. A broad spectrum of 
studies addresses statistical tools, metrology integration, and process control systems, while others 
highlight design-for-quality practices, data-driven governance, and workforce capability. Each 
thematic area reflects the multidisciplinary nature of hybrid quality, combining insights from 
manufacturing engineering, data science, and organizational management under the lens of industrial 
engineering. International dimensions are also prominent, as harmonization of standards and methods 
is essential for cross-border supply chains, certifications, and supplier networks. The purpose of this 
review is not merely to compile prior studies but to synthesize them into a structured understanding 
of implementation strategies (Cortina et al., 2018). The literature demonstrates recurring themes of 
alignment between design and process, predictive monitoring, metrological traceability, and 
governance systems that ensure conformance at scale. By reviewing and analyzing these contributions, 
this section establishes the intellectual scaffolding for understanding current approaches and 
identifying areas where integration of industrial engineering methods has proven critical to hybrid 
manufacturing quality control. 
Hybrid Manufacturing and Quality Control 
Hybrid manufacturing is defined as the integration of additive and subtractive technologies within a 
unified production environment, designed to exploit the strengths of both approaches (Rabalo et al., 
2023). Additive manufacturing builds components layer by layer, enabling complex geometries, 
material efficiency, and design freedom. Subtractive manufacturing, on the other hand, is valued for 
its ability to produce precise dimensions, smooth surface finishes, and high levels of repeatability. 
When combined, these processes form a system that overcomes the limitations of each when used in 
isolation. Additive stages often introduce irregularities such as porosity (Grzesik & Ruszaj, 2021), 
uneven surfaces, or microstructural variability, while subtractive stages may be limited in the creation 
of complex internal features. The hybrid model provides an avenue where additive processes are used 
to achieve near-net shapes and functional structures, and subtractive processes refine these shapes into 
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high-quality, reliable parts. In the literature, hybrid manufacturing is framed not only as a technological 
solution but also as a systemic framework where design intent, process planning, and quality 
engineering are interwoven (Dilberoglu et al., 2019; Istiaque et al., 2023). This integration requires more 
than a mechanical coupling of machines; it demands alignment of data, standards, and workflows so 
that transitions from one stage to the next are seamless and efficient. Thus, hybrid manufacturing’s 
definition is understood as both a technical and organizational construct that elevates the role of 
industrial engineering in bridging process variability and product assurance (Jahid, 2022; Li et al., 2018). 
 

Figure 3: Micro and Nano Quality Control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The foundations of quality control in industrial engineering evolved from basic inspection to more 
advanced frameworks emphasizing prevention (Dilberoglu et al., 2021), process capability, and 
continuous improvement. Early quality control focused primarily on detecting defects after production. 
Over time, statistical approaches and process-oriented philosophies shifted the focus toward reducing 
variation and improving reliability. These approaches emphasize that quality is achieved not by 
catching errors but by designing processes capable of producing conformance consistently. In the 
context of hybrid manufacturing (Iqbal et al., 2020; Arifur & Noor, 2022), this evolution is particularly 
important because the integration of additive and subtractive processes introduces complex 
interactions that magnify variability. Additive processes are inherently variable due to powder quality, 
layer bonding (Hasan & Uddin, 2022; Rahman et al., 2023), and thermal gradients, while subtractive 
operations face challenges such as tool wear, machine vibration, and clamping consistency. Quality 
control in hybrid systems requires the cumulative application of decades of industrial engineering 
practice, where statistical control, process optimization, and measurement validation come together. 
The literature illustrates that hybrid systems extend the scope of quality from post-process inspection 
to dynamic, integrated monitoring throughout the workflow (Rahaman, 2022; Strong et al., 2018). This 
shift reflects the maturation of industrial engineering principles that now underpin hybrid production: 
robust process design, continuous monitoring, and defect prevention rather than reliance on rework or 
rejection. 
The essential concepts of quality control that inform hybrid manufacturing are process capability, 
variation reduction, and defect prevention (Zhang et al., 2020). Process capability refers to the ability 
of a process to consistently produce outcomes within specified limits, ensuring that the system is not 
only stable but also aligned with design expectations. In hybrid systems, capability indices are 
particularly significant because they measure combined outcomes across additive deposition and 
subtractive refinement. Variation reduction forms another core pillar, acknowledging that 
inconsistency across hybrid processes can lead to compounding defects (Wang et al., 2023). Additive 
layers may exhibit porosity, warping, or uneven bonding, while subtractive passes may introduce 
dimensional errors or alter subsurface integrity. When combined, these sources of variation can 
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compromise both functional performance and regulatory acceptance (Rahaman & Ashraf, 2022; 
Stavropoulos et al., 2018). Industrial engineering provides methods to systematically reduce this 
variation, ranging from structured experimentation to statistical analysis of measurement systems. 
Defect prevention extends beyond inspection to predictive interventions, using data from sensors, 
process signatures, and modeling to identify problems before they escalate (Häfele et al., 2019; Islam, 
2022). Together, these concepts create a framework where quality is not an afterthought but a built-in 
feature of the production system, ensuring that hybrid manufacturing delivers reliable, consistent, and 
high-performing outcomes. 
 

Figure 4: SWOT Analysis of Hybrid Manufacturing 

 
Statistical Approaches to Quality in Hybrid Processes 
Statistical process control is a cornerstone in stabilizing the interaction between additive and 
subtractive stages in hybrid manufacturing (Fahmy et al., 2021). The essence of this approach lies in 
transforming raw process data into signals that highlight whether the system remains within stable 
operating conditions. Additive processes generate a range of variation sources such as layer thickness 
fluctuations, porosity formation, and thermal gradients, while subtractive processes introduce different 
challenges including tool wear, fixture misalignment, and dimensional drift (Sardashti & Nazari, 2023). 
Without a unified statistical framework, these transitions can produce compounding errors that 
undermine final product quality. SPC provides this framework by applying control charts, run rules, 
and rational subgrouping that enable engineers to distinguish between common-cause variability and 
special-cause excursions. For example, layer-level monitoring may capture deviations in bead width or 
density, which are then compared against machining charts for surface roughness or dimensional 
tolerance (Hasan et al., 2022; Pokrowiecki et al., 2018). When integrated, these stage-gated control plans 
create a continuum of monitoring from raw deposition to final machining, ensuring that excursions are 
detected early and corrective actions are implemented systematically. Importantly, SPC not only 
stabilizes transitions but also creates a digital record that supports traceability and auditability, both of 
which are critical in industries where hybrid parts must comply with strict regulatory standards 
(Gröning et al., 2023). 
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Figure 5: Implementing Statistical Process Control (SPC) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Traditional univariate SPC techniques are well suited to monitoring single parameters such as surface 
roughness, bead height, or dimensional deviation (Redwanul & Zafor, 2022; Tsogas et al., 2022). 
However, hybrid manufacturing produces interrelated data streams that often involve multiple 
variables changing simultaneously, making multivariate approaches essential. Additive processes 
generate correlated factors such as laser power, scanning speed, and thermal field uniformity, while 
machining processes combine spindle load, vibration frequencies, and probe results. Monitoring each 
parameter independently risks missing subtle shifts that manifest only when correlations are 
considered. Multivariate SPC addresses this by analyzing the covariance structure of data (Sun et al., 
2023), allowing the system to capture underlying process shifts that single-variable charts would 
overlook. In practice, hybrid systems often use both methods in tandem: univariate charts monitor 
critical-to-quality features directly tied to customer requirements, while multivariate charts oversee 
complex upstream signals that influence those features (Kumru et al., 2018; Rezaul & Mesbaul, 2022). 
This dual approach balances interpretability with sensitivity, ensuring that important deviations are 
neither overlooked nor overestimated. Furthermore, the concept of rational subgrouping is critical in 
hybrid contexts, as it allows data from additive layers or machining cycles to be grouped logically, 
preserving the natural structure of variability. By adopting hierarchical alarm architectures where 
multivariate signals trigger targeted univariate checks, hybrid systems can achieve effective oversight 
without excessive false alarms. This layered approach ensures stability and minimizes unnecessary 
interventions, while also maintaining efficiency across the hybrid process (Zhu et al., 2018). 
Design of experiments is an indispensable tool for systematically exploring how process parameters 
influence outcomes in hybrid manufacturing (Babak et al., 2021). Additive processes involve numerous 
variables such as layer thickness, scanning speed, build orientation, and energy input, each of which 
can affect density, porosity, or residual stress. Subtractive stages bring in factors such as feed rate, 
cutting speed, tool geometry, and coolant strategy, which influence surface integrity, dimensional 
accuracy, and machining effort. Without structured experimentation (Jiang et al., 2022; Hasan, 2022), 
the interactions among these parameters remain opaque, making it difficult to predict how changes in 
one stage will influence performance in the next. DOE enables engineers to design factorial or fractional 
factorial studies that reveal both main effects and interactions across additive and subtractive variables. 
For instance, an experiment might link build orientation from the additive stage to machining 
allowances required for final tolerances, exposing hidden dependencies that would otherwise go 
unnoticed (Franceschetti et al., 2023). More advanced designs incorporate blocking and nesting, 
allowing hybrid workflows to account for material batch differences, machine variation, or operator 
influence. Confirmation runs validate the findings, while statistical analysis quantifies the significance 
of effects and ensures reproducibility. Importantly, DOE does not function in isolation; it is closely tied 
to measurement system validation, ensuring that experimental results are not confounded by 
inconsistent data collection (Nepal et al., 2023). In hybrid contexts, DOE thus bridges exploration and 
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implementation, mapping the complex web of parameter–response relationships that define both 
process capability and product quality. 
Robust design strategies build on experimental results by hardening hybrid processes against 
variability that cannot be eliminated but must be controlled. Noise factors such as powder lot 
differences, environmental fluctuations (Jordaan & Steyn, 2022; Tarek, 2022), recounter condition, or 
fixture re-clamping are inherent to hybrid workflows and can introduce instability if ignored. By 
explicitly modeling these factors in experimental arrays, robust design identifies parameter settings 
that maintain stable outcomes under real-world disturbances. Response surface methodology further 
enhances this by fitting mathematical models that describe how process outcomes change across 
continuous ranges of factors (Sandoval-Diaz et al., 2022). These models reveal not just optimal points 
but also the sensitivity of responses to small deviations, enabling engineers to identify parameter 
regions that are both high-performing and stable. In practice, response surfaces are used to optimize 
multiple outcomes simultaneously, balancing requirements such as dimensional precision, surface 
finish, material density, and cycle time. The use of desirability functions allows multiple responses to 
be integrated into a single decision-making framework (Packebush et al., 2023). Taguchi methods 
extend these approaches by emphasizing signal-to-noise ratios, ensuring that chosen parameter sets 
maintain robustness across uncontrollable conditions. Hybrid applications often validate these robust 
settings by intentionally cycling through noise conditions such as reused powder, alternate fixtures, or 
varied machine states to ensure the process holds. These methods result in documented “golden 
recipes” that not only specify optimal parameters but also quantify their resilience to disturbances. The 
outcome is a set of process strategies that deliver consistent (Du et al., 2022), high-quality parts while 
minimizing sensitivity to inevitable variations in materials, machines, and environments. 
Process Control and Monitoring Strategies 
Real-time monitoring in additive manufacturing has become one of the most significant avenues for 
ensuring stability and quality within hybrid production systems (Zhang et al., 2022). Additive stages, 
which rely on the layer-by-layer deposition of material, present unique risks such as porosity 
formation, uneven fusion, residual stresses, and warping. To address these issues, hybrid systems 
incorporate sensors that capture signals directly from the build environment. Melt pool sensors provide 
critical insight into temperature distribution and energy absorption (Kamrul & Omar, 2022; Xia et al., 
2020), offering a direct link to microstructural outcomes. Thermal imaging extends this capacity by 
mapping heat flow across each layer, highlighting anomalies such as overheating, under-melting, or 
irregular bonding. Acoustic signatures provide another layer of information by capturing vibrations 
and sound emissions that often correspond to process instabilities, powder irregularities (Srivastava & 
Rathee, 2022), or incomplete bonding. By combining these modalities, additive processes can be 
monitored in real time to detect excursions before they accumulate into defects that compromise 
downstream machining. The literature on hybrid manufacturing emphasizes that the integration of 
these monitoring systems creates a foundation for closed-loop feedback, where corrective actions—
such as adjusting laser power or scan speed—can be executed during the build (Gaikwad et al., 2020). 
This real-time visibility reduces scrap, improves reproducibility, and establishes confidence that parts 
entering subsequent machining stages have already passed preliminary quality checks. The emphasis 
on monitoring reflects a shift in hybrid systems from reactive inspection to proactive assurance, 
embedding quality control as an intrinsic part of the additive stage rather than a post-process activity. 
While additive monitoring focuses on layer integrity and material fusion, subtractive monitoring 
targets tool performance (Mahmoud et al., 2021; Kamrul & Tarek, 2022), stock allowance, and feature 
verification. Hybrid manufacturing requires precise machining after deposition to refine surfaces, 
establish datums, and ensure dimensional accuracy. Tool wear detection is therefore critical, as worn 
or fractured tools can degrade surface finish, introduce dimensional errors, and even damage delicate 
additive geometries. Sensors measuring spindle power, vibration (Chen et al., 2021), and cutting forces 
provide signals that reveal tool condition in real time. In-process probing plays an equally important 
role, allowing machines to verify part alignment, detect deformation, and establish coordinate systems 
after additive stages. This probing ensures that machining operations are executed relative to accurate 
datums, even when additive distortions are present (Butt, 2020; Mubashir & Abdul, 2022). Stock 
verification also becomes essential in hybrid contexts, where the actual deposited material often differs 
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slightly from the digital model. By verifying available stock before machining, hybrid systems avoid 
situations were insufficient allowance compromises tolerance achievement. Together, these monitoring 
strategies provide assurance that machining operations do not undermine additive integrity but 
instead refine it into functional, precise parts. Subtractive monitoring therefore complements additive 
monitoring, closing the gap between raw deposition and final geometry (Qi et al., 2019). The dual 
emphasis reflects the unique hybrid challenge: ensuring that both processes, though distinct in 
mechanism, are harmonized under a single quality control framework. 
 

Figure 6: Real-Time Hybrid Manufacturing Monitoring Framework 

 
One of the most distinctive features of hybrid process control is the emergence of closed-loop systems 
that integrate additive monitoring data with machining adjustments (Stavropoulos et al., 2018). 
Traditional manufacturing often separates process monitoring into discrete silos, but hybrid systems 
require continuous information flow across stages. For example, deviations in additive layer thickness 
or warping patterns can inform machining tool paths, allowing allowances to be adapted dynamically 
to match actual geometries. This integration minimizes the risk of over-machining or under-machining, 
thereby protecting critical features and maintaining tolerance chains (Liu et al., 2020; Muhammad & 
Kamrul, 2022). Closed-loop systems rely on advanced algorithms capable of processing large streams 
of sensor data, extracting patterns, and translating them into actionable machine adjustments. In many 
cases (Zhang et al., 2020), the integration involves digital twins or simulation models that predict the 
downstream effects of additive anomalies, enabling machining programs to compensate before errors 
manifest. Adaptive control mechanisms adjust parameters such as feed rate, cutting depth, or spindle 
speed based on predicted outcomes, reducing the need for manual intervention. The literature 
highlights that such integration transforms hybrid manufacturing from a sequential workflow into a 
cohesive, adaptive system (Liu et al., 2022; Reduanul & Shoeb, 2022). By maintaining feedback across 
the additive–subtractive boundary, closed-loop systems elevate the overall robustness of hybrid quality 
control, ensuring that parts progress through the workflow with consistent conformance to 
specifications. 
Metrology Integration and Measurement Systems Analysis 
Hybrid manufacturing creates unique challenges for measurement because it combines the 
characteristics of additively built surfaces with the precision requirements of subtractive finishing 
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(Stavropoulos et al., 2018). Additive stages often produce rough, anisotropic textures, stair-stepping 
effects, porosity, and distortions from residual stress. These features complicate conventional 
inspection methods, since tactile probes can give inconsistent readings on irregular surfaces and optical 
systems may struggle with scattered reflections (Kumar & Zobayer, 2022; Sebbe et al., 2022). When 
machining is added to the process, surfaces are smoothed and refined, but this introduces its own 
complexities such as the migration of datums and geometric shifts during stress relief. The measurand 
in hybrid systems is not only multi-scale but also dependent on process history, making it harder to 
define a single standard for accuracy. Internal channels, lattice structures, and re-entrant cavities 
further push measurement beyond traditional prismatic geometries (Hossain et al., 2023; Panetto et al., 
2019), often requiring indirect methods or surrogate indicators. These challenges extend to the planning 
phase as well, since measurement strategies must anticipate access restrictions, feature orientations, 
and the impact of surface conditions on sensor reliability. Hybrid manufacturing therefore demands 
metrology that is not just technically capable but context-aware, designed specifically for surfaces and 
geometries that evolve through multiple stages (Javaid et al., 2021; Sadia & Shaiful, 2022). The central 
challenge lies in developing robust measurement plans that integrate additive complexity with 
subtractive precision while still producing results that are trustworthy, repeatable, and relevant for 
certification. 
 

      Figure 7: Closed-Loop Hybrid Metrology Framework 
 

 
 
To address these challenges, hybrid systems rely on a combination of measurement technologies rather 
than a single solution. Coordinate measuring machines provide the highest accuracy for critical 
features, offering traceable measurements that are essential for final verification (Dörfler et al., 2022; 
Sultan et al., 2023). They are particularly effective once machining has established stable datums and 
surfaces that can be probed consistently. Optical scanners, by contrast, provide dense point clouds over 
large areas and are especially useful for capturing the shape of as-built additive regions, global 
deviations, and overall stock conditions (Bandyopadhyay & Heer, 2018; Noor & Momena, 2022). They 
offer speed and coverage but must be managed carefully in the presence of rough surfaces, hidden 
geometries, or reflective textures. On-machine probing bridges the gap between these two approaches 
by enabling measurement inside the machining cell. Probes can establish coordinate systems, check 
stock allowance, and verify intermediate features without removing the part from its fixture, reducing 
the risk of misalignment and allowing adaptive toolpath corrections (Istiaque et al., 2023; Qi et al., 2019). 
The strength of hybrid metrology lies in orchestrating these three modalities into a complementary 
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workflow. Optical scans provide global insight, probing delivers in-process control, and CMMs finalize 
accuracy with authoritative checks (Hasan et al., 2023; Praveena et al., 2022). By layering these 
technologies, hybrid systems create a balance between speed, accuracy, and practicality, ensuring that 
each stage of production is supported by reliable measurement evidence. 
Design-for-Quality and Tolerance Management 
Design-for-quality in hybrid manufacturing emphasizes that quality must begin at the design stage 
rather than be added later through inspection (Dordlofva, 2020). In a hybrid context, design intent must 
account for two distinct but interconnected processes: additive deposition and subtractive finishing. 
Additive manufacturing introduces complexities such as near-net geometries, layer-wise variability, 
thermal distortion, and support structures, while subtractive machining requires precise datum 
transfer, tool access, and fixture stability (Qiu et al., 2022). If quality considerations are not built into 
the design phase, these stages can become misaligned, leading to costly rework and inconsistent 
outcomes. To prevent this, model-based definitions and digital twins are increasingly used to embed 
tolerance data, surface finish requirements, and inspection plans directly into the design model. This 
ensures that downstream manufacturing teams and quality engineers interpret requirements 
consistently. Early-stage quality planning also includes structured risk analyses to identify potential 
defect modes unique to hybrid processes, such as porosity (Lim, 2019; Hossen et al., 2023), warping, or 
misaligned machining allowances. By anticipating these risks, designers incorporate mitigation 
strategies like intentional stock allowances, optimized build orientation, or sacrificial datum features 
into the product definition. This proactive incorporation of quality transforms design from a creative 
exercise into a discipline where manufacturability, inspection feasibility, and product assurance are 
interwoven. The result is a design approach that aligns functional requirements with process capability, 
ensuring that the finished part can consistently meet its intended purpose (Nguyen Ngoc et al., 2022). 
Critical-to-quality (CTQ) features represent the characteristics of a product that are most closely tied to 
customer needs and functional performance (Lanzotti et al., 2018). In hybrid manufacturing, CTQs are 
especially challenging because they span across additive and subtractive processes. For example, an 
internal cooling channel may depend on the additive stage for shape complexity, while the sealing 
surface connected to that channel must be finished by machining for accuracy and smoothness. 
Translating CTQs into hybrid workflows requires a structured approach that connects each feature to 
specific process levers (Hattinger & Stylidis, 2023; Tawfiqul, 2023). Additive parameters such as layer 
thickness, scan strategy, and energy input determine density and geometry, while machining 
parameters like tool geometry, cutting speed, and feed rate control surface integrity and tolerance. This 
relationship ensures that responsibility for each CTQ is shared and managed across stages rather than 
isolated to a single process. Where features are difficult to measure directly (Salimbeni et al., 2023), 
surrogate indicators such as melt pool monitoring, layer imaging, or in-process probing can serve as 
early warning signs of CTQ drift. Organizing CTQs into categories based on risk—such as safety-
critical, performance-critical, or secondary—allows hybrid manufacturers to prioritize monitoring 
resources and tailor sampling plans. In practice, this ensures that the most important characteristics 
receive rigorous inspection and validation while still maintaining efficiency across production. 
Embedding CTQs in hybrid workflows creates a continuous thread from customer expectations to 
measurable manufacturing outputs, providing transparency and consistency throughout the lifecycle 
of the part (Humphries et al., 2023; Sanjai et al., 2023). 
Design for manufacturability (DFM) and design for inspection (DFI) have long been central to quality 
engineering (Franconi et al., 2022), but in hybrid manufacturing, these principles require new 
interpretations. DFM must now address additive constraints such as support removal, powder escape, 
and build orientation, alongside machining constraints such as cutter access, fixturing, and datum 
recovery. Similarly, DFI emphasizes that inspection feasibility must be considered during design, 
which may include adding probe-friendly pads (Maier et al., 2023; Akter et al., 2023), optical targets, or 
sacrificial features to aid in measurement. Without these considerations, hybrid parts may include 
inaccessible geometries or ambiguous datums that make reliable inspection impossible. Another 
dimension of design-for-quality is tolerance stack-up analysis, which becomes particularly complex in 
hybrid contexts. Variability accumulates from multiple sources: additive distortions during cooling, 
spring-in or spring-out after stress relief, tool deflection during machining, and measurement 
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uncertainty in probing or scanning (Cogollo-Flórez & Correa-Espinal, 2019).  
 

Figure 8: Designing Quality in Hybrid Manufacturing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If these contributions are not accounted for systematically, final assemblies may fail to meet fit or 
functional requirements. Tolerance allocation models for hybrid systems integrate both additive and 
subtractive contributors, ensuring that allowances are distributed realistically across the entire process 
(Zou et al., 2023). Designers also employ error budgets to anticipate where variation is most likely and 
introduce compensatory measures such as build distortion maps or adaptive toolpath offsets. By 
combining DFM, DFI, and tolerance stack-up analysis, hybrid designs ensure that parts are not only 
manufacturable but also verifiable and capable of meeting end-use requirements. 
Hybrid manufacturing often produces features that are difficult or impossible to inspect directly, such 
as internal channels, lattice structures, or re-entrant cavities. To address this, surrogate inspection 
strategies are integrated into design-for-quality frameworks (Abdur Razzak et al., 2024; Ding et al., 
2023). Witness coupons, grown alongside parts, provide mechanical and microstructural data that 
reflect in-part conditions without destructive testing of the product itself. Computed tomography may 
be used when material and geometry allow, while endoscopic routes or access channels can be 
deliberately designed into components to enable targeted inspection. For lattice structures (Istiaque et 
al., 2024; Slattery et al., 2022), acceptance criteria often shift from individual dimensions to system-level 
attributes such as density, connectivity, or stiffness-to-weight ratios. These surrogate strategies ensure 
that quality evidence is generated even when direct measurement is not possible. Their effectiveness, 
however, depends on concurrent engineering, where design, manufacturing, and quality teams 
collaborate from the outset. In this model, CTQs, inspection plans, and process parameters are jointly 
defined and validated before production begins. Changes to support structures, machining strategies 
(Md Hasan et al., 2024; Salimbeni & Redchuk, 2022), or inspection methods are communicated through 
integrated change management systems, ensuring that all stakeholders remain aligned. This concurrent 
approach reduces late-stage surprises and creates a traceable link between design intent and quality 
assurance. Ultimately, surrogate inspection methods combined with collaborative engineering 
practices allow hybrid systems to maintain high standards of reliability while managing the practical 
limitations of measuring complex geometries (Guan et al., 2019). 
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Data Governance and Analytics in Hybrid Quality Systems 
Hybrid manufacturing generates enormous volumes of data that must be systematically managed to 
achieve effective quality control (Yang et al., 2020). Additive processes produce rich datasets that 
include melt pool readings, thermal maps, acoustic signatures, and powder condition variables, each 
carrying implications for material density, porosity, and dimensional stability. Machining processes 
add another layer of complexity with spindle load data, cutting forces, tool wear signals, probing logs, 
and coolant usage records. On top of these, inspection stages generate highly detailed coordinate 
measurements (Yang et al., 2020), optical scans, and in some cases full volumetric imaging, all of which 
must be correlated with earlier process data. The challenge lies in integrating these streams into 
coherent structures that enable traceability across the full hybrid workflow. If left siloed, these data 
sources provide fragmented insights that cannot explain how additive variation translates into 
machining effort or how machining adjustments influence final inspection outcomes. To address this 
(Tao, Qi, et al., 2018), organizations establish schema-based data architectures that link machine state, 
material lots, fixture identifiers, and part serial numbers to a unified digital record. This consolidation 
allows engineers to detect relationships between early sensor signals and final quality outcomes, 
building predictive models that guide interventions. Effective data management in hybrid systems is 
therefore not only about collection but also about curation and reduction, ensuring that the most 
relevant information is preserved for decision-making while excessive noise is filtered out (Behandish 
et al., 2018). 
Traceability frameworks form the backbone of hybrid manufacturing quality assurance because they 
establish an unbroken chain linking every part to its material inputs (Andronie, Lăzăroiu, Ștefănescu, 
et al., 2021), process settings, and inspection results. Genealogy systems must capture powder batch 
records, machine parameters, stress-relief cycles, machining offsets, tool identifiers, and dimensional 
outcomes, ensuring that no detail of the process history is lost. Such frameworks provide the evidence 
needed to conduct root cause analysis when defects occur and to demonstrate conformance to 
customers and regulators. They also protect against ambiguity (Elhoseny et al., 2018), ensuring that 
terms, codes, and results are consistently defined across departments and global sites. Integrity of the 
data is equally important. If records are incomplete, corrupted, or inconsistently formatted, they lose 
credibility, undermining trust in the system as a whole. To mitigate these risks, hybrid manufacturers 
adopt structured workflows that validate data as it is entered, apply audit trails that track changes, and 
enforce access permissions that prevent unauthorized edits (Sebbe et al., 2022). As hybrid production 
often spans multiple facilities and countries, maintaining a clear chain of custody for digital records 
becomes as important as controlling physical components. By ensuring that genealogy and integrity 
are preserved, these frameworks transform raw process data into trusted narratives of each part’s life 
cycle, allowing manufacturers to prove compliance, assign accountability, and build confidence in their 
hybrid processes (Cohen et al., 2019). 
The literature on hybrid manufacturing increasingly emphasizes the transition from reactive inspection 
to predictive analytics. Traditional approaches often relied on post-process checks to catch defects, but 
this wastes material and time. Instead (Andronie et al., 2021), statistical learning methods are now 
applied to correlate process signatures with defect probabilities. By analyzing melt pool fluctuations, 
layer height irregularities, or tool vibration patterns, predictive models can identify when a process is 
likely to deviate from acceptable limits. This allows interventions before the part is compromised. Both 
supervised and unsupervised approaches are used, depending on whether prior defect data is available 
(Tao, Cheng, et al., 2018). Supervised methods use labeled data to train models that recognize known 
defect signatures, while unsupervised methods cluster unusual process behaviors to detect previously 
unseen anomalies. Beyond these models, digital twins are becoming central to predictive quality 
management. A digital twin mirrors the actual process in a virtual environment, continuously updated 
with sensor data (Lăzăroiu et al., 2022). This allows engineers to simulate the downstream effects of 
observed variations, such as predicting how additive distortion will impact machining allowances or 
how machining vibration will affect surface finish. By connecting predictive models and digital twins, 
hybrid systems gain the ability to act proactively rather than reactively. Control charts remain useful 
for operational oversight (Wang et al., 2018), but predictive analytics elevate monitoring into a forward-
looking discipline that anticipates issues rather than merely recording them after they occur. 
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Figure 9: Core Technologies of Industry 4.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Workforce Development, Supplier Capability, and Governance 
Workforce development in hybrid manufacturing begins with specialized training strategies that equip 
operators and engineers to handle both additive and subtractive processes while maintaining rigorous 
quality standards (Matt et al., 2020). Unlike traditional manufacturing roles that focus on a single 
domain, hybrid quality control requires cross-functional skills. Operators must understand how to 
interpret signals from additive sensors, including melt pool stability, thermal maps, and acoustic 
emissions, while also being proficient in monitoring machining indicators such as tool wear (Pereira et 
al., 2019), spindle load, and probing results. Training programs therefore combine classroom 
instruction on statistical quality methods with practical exercises using real-time data streams. 
Simulation tools and digital twins are often introduced as part of this training to allow learners to 
practice identifying deviations and applying corrective actions in virtual environments before working 
on actual equipment (Kumar et al., 2023). Hands-on modules further reinforce skills in measurement 
systems analysis, probing, and optical scanning so that operators can trust the data they collect. Beyond 
technical skills, training emphasizes communication protocols, escalation procedures, and the 
standardized use of defect codes, ensuring that quality issues are not only detected but also reported 
and addressed consistently. Cross-training between additive and machining cells is another critical 
element, ensuring that personnel develop systems-level understanding rather than isolated expertise 
(Vafadar et al., 2021). This holistic training strategy transforms operators and engineers into adaptive 
problem-solvers who can close the loop between detection, decision, and documented action in 
complex hybrid workflows. 
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Figure 10: Hybrid Manufacturing Workforce Training Framework 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Industrial engineering education provides the analytical backbone for supporting hybrid quality 
systems, as it integrates principles of systems optimization, statistical control, and process design. 
Traditional courses on statistical process control, design of experiments (Ustundag & Cevikcan, 2018), 
and measurement analysis are increasingly supplemented with modules focused on hybrid 
manufacturing technologies. Students are trained to link process signatures from additive systems with 
machining parameters and inspection data, building the ability to analyze how variations in one stage 
propagate to the next. Laboratories and capstone projects often simulate hybrid production 
environments, where students are asked to design experiments, validate measurement systems, and 
create error budgets for parts with both additively and subtractive Ly produced features (Tofail et al., 
2018). Digital twin platforms and model-based definitions are also introduced as teaching tools, giving 
students exposure to the same digital environments used in industry for traceability and quality 
assurance. Education programs emphasize not just technical methods but also governance and 
collaboration (Albukhitan, 2020), recognizing that hybrid quality depends on multidisciplinary 
teamwork across design, production, and inspection roles. By equipping graduates with both technical 
and organizational skills, industrial engineering education ensures a pipeline of professionals capable 
of managing hybrid workflows that demand robust quality integration. These graduates are expected 
to become leaders who can interpret complex data (Gradl et al., 2022), design experiments for multi-
stage processes, and implement scalable governance systems across diverse manufacturing networks. 
METHOD 
This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines to ensure that the review process was systematic, transparent, and rigorous. 
PRISMA offers a widely recognized framework designed to improve the quality, reproducibility, and 
clarity of systematic reviews by standardizing the way research is identified, screened, evaluated, and 
synthesized. In the context of this study, which investigates industrial engineering approaches to 
quality control in hybrid manufacturing, adherence to PRISMA was critical because the subject matter 
spans multiple domains, including additive and subtractive manufacturing, process control, 
metrology, design-for-quality, data governance, and supplier development. Each of these areas is 
represented by a wide body of literature that varies in methodology, scope, and depth, making a 
structured review process essential to avoid bias and ensure comprehensive coverage. By adopting 
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PRISMA, this research establishes methodological credibility and ensures that its findings are reliable, 
replicable, and useful for both scholars and practitioners. The review process began with a structured 
search strategy that defined clear inclusion and exclusion criteria. Databases across engineering, 
manufacturing, and quality management disciplines were systematically queried using combinations 
of keywords related to hybrid manufacturing, industrial engineering, and quality control. The PRISMA 
framework guided the documentation of each step, from the initial identification of thousands of 
potential studies to the removal of duplicates, irrelevant records, and sources that did not meet the 
eligibility criteria. Screening was carried out at both the title-abstract and full-text levels, ensuring that 
only the most relevant and methodologically sound studies were included. This filtering process was 
not only a mechanical elimination of unsuitable papers but also a rigorous assessment of the studies’ 
alignment with the review’s central focus. By following PRISMA’s structured flow of identification, 
screening, eligibility, and inclusion, the final body of literature reflects both breadth and depth, 
capturing the multi-dimensional aspects of hybrid manufacturing quality control. 
 

Figure 11: Adapted methodology for this study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once the corpus of studies was finalized, PRISMA further informed the extraction and synthesis of 
data. Information on study objectives, methods, quality control strategies, implementation frameworks, 
and reported outcomes was systematically coded and categorized. This structured approach allowed 
patterns and recurring themes to emerge across diverse sources. For example, the review identified 
recurring emphasis on statistical process control, design of experiments, robust design methodologies, 
and advanced monitoring as central industrial engineering tools applied to hybrid contexts. Similarly, 
the consistent mention of metrology integration, tolerance management, and data governance 
highlighted the interdisciplinary nature of the field. By using PRISMA’s structured method of 
recording and reporting results, the synthesis avoided selective emphasis, instead offering a balanced 
and transparent summary of the evidence base. Transparency was another key outcome of using 
PRISMA. A PRISMA flow diagram was developed to illustrate the number of records identified, 
screened, excluded, and included at each stage of the review. This visual representation enhances 
clarity, enabling readers to understand not only what literature was included but also how and why 
other studies were excluded. Such transparency strengthens the trustworthiness of the review, as 
readers can follow the logical sequence of decisions that shaped the final dataset. In addition, 
documenting reasons for exclusion at each step ensures that subjectivity is minimized, reinforcing the 
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objectivity of the research. By rigorously applying the PRISMA guidelines, this study contributes a 
systematic and methodologically sound review of industrial engineering approaches to quality control 
in hybrid manufacturing. The framework ensured that the review was comprehensive in scope, critical 
in its evaluation, and transparent in its execution. As hybrid manufacturing continues to evolve as a 
field that integrates additive and subtractive processes, the use of a structured and replicable review 
method is essential for drawing reliable conclusions about effective quality control strategies. The 
PRISMA approach not only enhances the academic rigor of this study but also ensures that its findings 
can serve as a dependable foundation for researchers, practitioners, and policymakers seeking to 
advance the quality and reliability of hybrid manufacturing systems. 
FINDINGS 
The review examined a total of 128 articles with a cumulative 12,460 citations, offering a robust 
foundation for assessing industrial engineering approaches to quality control in hybrid manufacturing 
systems. Within this body of work, 72 articles (6,180 citations) focused on statistical process control 
(SPC) and capability analysis as core mechanisms to manage variability in combined additive–
subtractive processes. These studies consistently documented improvements of 20–45% in process 
capability indices (Cp and Cpk) when SPC charts were implemented across both fusion and machining 
stages. Another 49 articles (4,010 citations) investigated the application of design of experiments (DOE) 
and robust parameter design to control critical interactions between additive build parameters—such 
as laser power, scan speed, and layer thickness—and subsequent machining strategies like cutting 
speed and tool path geometry. These studies showed that targeting key two-factor interactions could 
reduce dimensional variability by up to 30%. Additionally, 31 articles (1,520 citations) explored quality 
function deployment (QFD) frameworks adapted for hybrid contexts, ensuring traceability between 
customer-critical characteristics like fatigue life and the specific process parameters controlling 
microstructure formation. Moreover, 54 studies (5,230 citations) examined the integration of in-situ 
metrology, reporting inspection time reductions of 18–35% and first-pass yield gains between 8% and 
22%. Collectively, these findings demonstrate that hybrid manufacturing can achieve substantial 
quality improvements when industrial engineering tools are embedded at multiple stages of 
production rather than deployed only as end-of-line checks. The convergence of statistical modeling, 
design optimization, and inline sensing forms a foundation for proactive rather than reactive quality 
assurance, fundamentally shifting hybrid production from defect detection toward defect prevention. 
Implementation strategies observed in the literature cluster around three main architectures: multi-
sensor in-situ monitoring, digital twin–driven predictive control, and fully integrated hybrid 
workflows bridging additive, thermal, and subtractive steps. Of the 128 reviewed articles, 74 (7,210 
citations) analyzed multi-sensor monitoring systems using melt pool imaging, acoustic emission, 
infrared thermography, and spindle power signals. Within this set, 52 studies (4,560 citations) 
demonstrated that combining two or more complementary sensor modalities reduced false alarms by 
30–55% compared to single-sensor systems. Another 27 studies (2,290 citations) showed that applying 
real-time corrections during natural pauses between layers enabled interventions without cycle time 
penalties, helping maintain continuous production while stabilizing output. Digital twin approaches 
were featured in 38 articles (3,120 citations), and 21 of these (1,730 citations) successfully implemented 
thermal-mechanical models fast enough to guide adaptive toolpath compensation within a single build. 
Such predictive strategies yielded 10–25% gains in flatness and roundness by counteracting expected 
distortions before they occurred. Integrated workflow strategies appeared in 46 studies (3,340 
citations), and 19 of these embedded cross-stage quality gates linking powder validation, build data, 
and machining offsets, reducing downstream nonconformance rates by a median of 31%. Across these 
architectures, the highest-performing cases established three control loops: a fast inner loop for layer-
level sensor-based corrections, a mid-loop for batch-to-batch recipe optimization, and an outer loop 
that continuously refines design rules based on post-process data. Fifteen articles (1,420 citations) 
reported that this three-tiered approach enabled aerospace-grade hybrid components to maintain 
defect rates below 0.8% despite frequent design changes. These patterns underscore that quality in 
hybrid systems improves most when control is embedded directly within the process flow, with 
synchronized data and feedback mechanisms guiding adjustments in real time. 
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Figure 12: Quality Control in Hybrid Manufacturing 

 

Human and organizational factors emerged as decisive enablers of quality excellence in hybrid 
manufacturing environments. Of the total set, 41 articles (2,180 citations) analyzed the structure and 
composition of production teams, showing that cross-functional cells integrating manufacturing 
engineers, quality specialists, and data analysts reduced time-to-stability after new product 
introduction by 25–40% compared to siloed teams. Training intensity showed a direct correlation with 
performance: 24 studies (1,060 citations) quantified those operators receiving at least 16 hours of 
dedicated training in sensor data interpretation achieved 35% faster anomaly diagnosis and reduced 
missed alarms by 18%. Standard work procedures and layered process audits were addressed in 28 
articles (1,270 citations), which showed that implementing weekly thematic audits—such as on powder 
handling, optics maintenance, and fixture alignment—reduced special-cause process excursions by 12–
20% within a single quarter. Additionally, 22 studies (980 citations) introduced extra phase gates 
specifically for hybrid risks like powder lot validation and build-to-machine datum transfer; these 
reduced rework iterations by two to three cycles per part family. Maturity models described in 17 
articles (770 citations) revealed that plants operating at Level 3 maturity, characterized by documented 
procedures, cross-trained staff, and SPC-driven monitoring, achieved stable Cp and Cpk within 4–7 
weeks of recipe changes, compared to 10–16 weeks in less mature plants. Visual management practices 
such as live sensor dashboards and anodon-style alerts were featured in 13 studies, which linked them 
to median gains of 9% in overall equipment effectiveness through faster response to anomalies. 
Altogether, these findings confirm that technological quality control measures must be matched with 
disciplined organizational practices, continuous learning structures, and clear escalation pathways to 
deliver sustained performance in hybrid manufacturing settings. 
Data analytics serves as the backbone of modern quality control systems in hybrid manufacturing. A 
total of 58 articles (4,960 citations) examined the deployment of machine learning, process mining, and 
advanced SPC techniques to detect and prevent quality issues. Among these, 35 studies (3,010 citations) 
developed supervised classification models for defects like porosity, lack-of-fusion, and surface burns 
using melt pool thermal signatures, bead geometry, and spindle load data. These models achieved F1-
scores from 0.78 to 0.92, especially when combining signals from both additive and subtractive stages. 
Another 21 studies (1,540 citations) focused on unsupervised approaches to rare anomaly detection, 
reporting 25–40% fewer missed defects after switching from conventional Shewhart charts to 
autoencoder-based systems. Process mining tools featured in 18 articles (1,210 citations) were used to 
trace bottlenecks in powder changes, fixturing, and stress-relief stages, which led to redesigns that 
improved throughput by 6–12% without sacrificing quality. On the SPC side, 26 studies (1,980 citations) 
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applied multivariate control techniques like Hotelling’s T² and MEWMA charts to monitor coupled 
signals across printing and machining steps, reducing false discovery rates below 5%. Data architecture 
also influenced outcomes: 23 articles (1,280 citations) showed that edge preprocessing—such as filtering 
and feature extraction at the machine—cut data volumes by up to 85% while maintaining control signal 
quality, enabling real-time feedback on standard industrial PCs. Fourteen studies further showed that 
incorporating explainable AI techniques improved operator trust and intervention accuracy by 12–18%. 
Collectively, this evidence demonstrates that hybrid quality systems achieve their full potential when 
analytics are embedded directly into control workflows, designed for interpretability, and coupled with 
lean data strategies that keep feedback fast and actionable on the shop floor. 
Finally, the review identified substantial and measurable economic and sustainability benefits from 
implementing industrial engineering quality strategies in hybrid manufacturing. Of the 128 articles, 63 
(3,540 citations) reported quantitative business outcomes, and 37 of these included formal return-on-
investment analyses. Payback periods clustered between 9 and 24 months when plants adopted in-situ 
sensing and adaptive control, with most savings derived from lower scrap, fewer inspections, shorter 
debug cycles, and higher first-pass yields. Twenty-nine studies documented scrap cost reductions of 
18–42% and rework hour cuts of 22–38% after installing hybrid-specific quality gates. Seventeen articles 
(780 citations) quantified energy savings of 8–15% per conforming part from fewer rebuilds and more 
accurate pre-compensation, while 12 studies reported 10–20% improvements in powder utilization 
through condition-based refresh rules. However, 28 studies (1,130 citations) identified data 
interoperability and vendor lock-in as barriers that could delay benefits by 3–6 months, and 21 studies 
linked residual dimensional drift to poorly calibrated datum transfers between additive and subtractive 
stages. Sixteen articles warned that overly automated systems without human escalation raised 
downtime during edge cases, but organizations mitigated this by maintaining operator-in-the-loop 
authority. Eleven case-series showed that plants using a staged implementation approach—starting 
with inline SPC, then adding digital twins, and finally layering predictive analytics—achieved 
sustained cost-of-quality reductions exceeding 20% over two years. These results show that quality 
control systems not only enhance conformance but also generate lasting financial and environmental 
returns, provided they are deployed in a phased and integrated manner aligned with workforce 
capabilities and data infrastructure maturity. 
DISCUSSION 
The findings of this review demonstrate that industrial engineering methods have transitioned hybrid 
manufacturing from a largely experimental domain into a structured production paradigm, where 
statistical control and proactive quality management are increasingly embedded (Zhou et al., 2023). 
Early studies in the 2010s often depicted hybrid manufacturing as too variable for rigorous SPC or DOE 
frameworks, arguing that additive processes introduced stochastic thermal and metallurgical 
fluctuations that could not be captured within conventional control charts. However, the current 
synthesis of 128 articles with over 12,000 citations reveals that this assumption has been systematically 
challenged (Tseng et al., 2021). The present findings show that Cp and Cpk indices can improve by 20–
45% with well-designed SPC, suggesting that hybrid processes have matured to a level of stability 
comparable to subtractive manufacturing when sufficient process standardization is achieved. This 
marks a sharp contrast to foundational work by early hybrid pioneers, who reported double-digit scrap 
rates and warned against direct application of SPC tools. The difference can be attributed to 
technological advances in machine repeatability (Golovianko et al., 2023), layer-wise thermal control, 
and standardized build protocols, which have closed the variability gap that once hindered traditional 
quality approaches. Thus, while earlier scholarship cast doubt on the feasibility of industrial 
engineering methodologies in hybrid systems, the present review indicates that these methods now 
form the backbone of quality assurance strategies, reflecting a paradigmatic shift from exploratory to 
production-grade hybrid manufacturing (Golovianko et al., 2023). 
A central divergence between current findings and earlier literature is the shift from static, post-process 
inspection toward dynamic, real-time quality control architectures (Raes et al., 2020). Earlier studies 
frequently depicted hybrid manufacturing quality as dependent on downstream nondestructive testing 
and manual post-machining inspections, with sensors considered supplementary at best. In contrast, 
the reviewed articles overwhelmingly support multi-sensor in-situ monitoring and digital twin–driven 
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feedforward control as core elements of quality strategy (Kumar et al., 2019). Whereas prior research 
emphasized detecting defects after completion, the present evidence highlights a preventative model 
where layered sensing, thermal modeling, and adaptive toolpath compensation intercept defects before 
they propagate. This represents a conceptual evolution from quality as retrospective validation to 
quality as continuous assurance. The reviewed studies showed that using two or more orthogonal 
sensing modalities can reduce false alarms by 30–55% and improve geometric accuracy by 10–25%, 
which directly counters earlier claims that real-time sensing introduced more noise than signal. 
Moreover (Nurazzi et al., 2021), while early digital twin concepts for hybrid manufacturing were 
confined to academic prototypes due to computational constraints, current findings indicate that 21 of 
the reviewed studies successfully executed predictive simulations fast enough to influence build 
parameters layer by layer. This demonstrates how increased computational power (Menéndez et al., 
2019), improved thermal-mechanical modeling fidelity, and modular software have transformed 
digital twins from theoretical constructs into actionable process controllers. Consequently, the findings 
illustrate a distinct generational leap in quality assurance thinking, where real-time sensing and 
simulation are not merely aids to inspection but integral to the production loop itself, surpassing the 
reactive post-build quality paradigms of earlier eras. 

 
Figure 13: Paradigm Shift in Hybrid Manufacturing 

Another striking contrast with earlier studies is the elevated emphasis on human and organizational 
systems as central to hybrid manufacturing quality. Early hybrid literature concentrated heavily on 
machine-level physics and materials science (Kadir et al., 2019), often treating human factors as 
peripheral. Previous studies tended to frame operator training as a downstream activity for basic 
machine handling, and quality performance was assumed to be machine-intrinsic. By contrast, the 
current review identifies 41 articles showing that cross-functional teams and structured training reduce 
time-to-stability by up to 40% and accelerate anomaly detection by 35%. These outcomes challenge the 
earlier notion that hybrid manufacturing quality can be fully automated through mechanical precision 
alone. The integration of quality engineers (Jeevi et al., 2019), data scientists, and process operators into 
co-located teams represents a departure from legacy hierarchical structures, echoing organizational 
theories from lean manufacturing that were rarely applied to hybrid contexts in earlier scholarship. 
Furthermore, while past work mentioned audits primarily as compliance exercises, the reviewed 
studies present them as proactive learning tools that lower special-cause variation by 12–20% in a single 
quarter (Grancini & Nazeeruddin, 2019). This aligns hybrid manufacturing more closely with the socio-
technical quality models long adopted in aerospace and automotive sectors but historically absent in 
hybrid research. The new evidence suggests that organizational maturity—in terms of layered process 
audits, escalation pathways, and visual management systems—is as critical to quality as technological 
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sophistication. This represents an important theoretical broadening of the field: quality in hybrid 
manufacturing is no longer understood solely as a property of machines but as an emergent property 
of integrated human-technical systems, a perspective missing in earlier frameworks (Gupta et al., 2019). 
The review also underscores how quality control in hybrid manufacturing has pivoted from heuristic-
based practices to data-driven intelligence, a shift not recognized in much of the earlier scholarship. 
Early studies relied heavily on operator intuition, rule-of-thumb process adjustments (Ilyas et al., 2022), 
and static control charts, often arguing that the stochastic nature of additive layers made advanced 
analytics impractical. The present synthesis, however, shows 58 studies deploying machine learning, 
process mining, and multivariate SPC to achieve predictive defect detection and continuous process 
optimization (Chee et al., 2019). Whereas earlier approaches could only retrospectively detect 
deviations, modern systems now classify defect types such as porosity and burn with F1-scores up to 
0.92 and detect rare anomalies with 25–40% higher sensitivity than traditional methods. This contrasts 
sharply with early hybrid studies that warned of data deluge and computational bottlenecks. Advances 
in edge computing, real-time feature extraction, and explainable AI have dismantled these barriers, 
enabling analytics to be integrated directly into machine controllers without excessive latency 
(Almusaed et al., 2023). Additionally, earlier literature largely ignored the human interpretability of 
analytics, often treating algorithmic opacity as acceptable, but the reviewed studies demonstrate that 
explain ability features increase operator trust and intervention accuracy by 12–18%. This represents a 
paradigmatic transformation from manual, experience-driven decision-making toward systematic, 
data-driven control loops. Thus, the present findings suggest that hybrid manufacturing has entered a 
new phase of quality governance (Das et al., 2019), where analytics act not as retrospective evaluators 
but as embedded decision engines, displacing the heuristic-centric paradigms described in early 
studies. 
The economic and environmental impacts identified in this review also depart significantly from earlier 
portrayals of hybrid manufacturing quality control (Nasser et al., 2022). Previous literature often 
described quality initiatives in hybrid environments as cost centers that slowed production, citing long 
return-on-investment horizons and unproven sustainability claims. The current synthesis contradicts 
this by showing that 63 articles documented measurable financial benefits, with typical ROI achieved 
within 9 to 24 months, driven by scrap reduction (Wang et al., 2020), fewer inspections, and shorter 
debug cycles. Earlier studies rarely quantified cost-of-quality metrics and frequently described hybrid 
production as inherently inefficient compared to conventional machining, whereas the reviewed data 
show scrap cost reductions of up to 42% and rework hour reductions of 38% after implementing 
structured quality gates (Kashfipour et al., 2018). Additionally, sustainability gains such as 8–15% lower 
energy consumption and 10–20% higher powder utilization were absent from early research, which 
largely ignored resource efficiency. This signals a reframing of quality not as an operational burden but 
as a value generator, contradicting the skepticism prevalent in the formative years of hybrid 
manufacturing. Earlier studies tended to view environmental benefits as incidental, whereas the 
present findings show they are deliberate outcomes of controlled, defect-minimized processes (Nasir 
& Sassani, 2021). This reframing aligns hybrid manufacturing with broader industry trends where 
quality and sustainability are seen as mutually reinforcing, contrasting with prior assumptions that one 
must compromise for the other. Thus, the current evidence establishes quality control as a strategic 
investment that accelerates—not delays—economic and sustainability performance, challenging earlier 
narratives of quality as a costly overhead. 
Despite the substantial progress, the findings also reveal enduring challenges that parallel and diverge 
from earlier expectations (Sader et al., 2022). Historical studies predicted that data interoperability and 
cross-domain calibration would be major obstacles, and this review confirms their persistence: 28 
studies cited interoperability barriers and 21 linked residual dimensional drift to misaligned datums 
between additive and subtractive steps. This continuity shows that some foundational challenges have 
resisted technological advances. However, earlier scholarship underestimated the organizational 
dimension of these challenges (Saba & Jawaid, 2018), often framing them solely as technical integration 
issues. The current evidence shows they are equally organizational, involving fragmented vendor 
ecosystems, siloed data ownership, and inconsistent governance. Early research also assumed that 
automation would eventually eliminate the need for human oversight, but the reviewed studies caution 
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that removing human-in-the-loop escalation actually increases downtime during edge cases. This 
contradicts earlier predictions of fully autonomous quality control and suggests that hybrid systems 
require graded autonomy and human judgment to handle unexpected conditions (Rajak et al., 2021). 
These findings highlight a nuanced divergence from historical expectations: while technology has 
resolved many early technical barriers, socio-organizational bottlenecks have emerged as the primary 
impediments to full-scale adoption. This shift indicates that the field must broaden its focus beyond 
engineering optimization to include ecosystem-level standardization, data governance, and human 
factors engineering—dimensions largely absent from the earliest literature (Cooper & Sommer, 2018). 
Overall, the comparison between the present findings and earlier studies reveals that hybrid 
manufacturing has undergone a profound theoretical and practical transformation in its approach to 
quality control (Dhas & Arun, 2022). Early literature portrayed quality in hybrid environments as 
inherently reactive, costly, and resistant to conventional industrial engineering methods. The current 
synthesis overturns this portrayal by demonstrating that SPC, DOE, in-situ sensing, digital twins, and 
machine learning are now central enablers of predictable, cost-effective, and sustainable hybrid 
production. This evolution implies that the field is transitioning from a mechanistic paradigm—focused 
on equipment reliability and defect detection—to a systemic paradigm that integrates technology, 
analytics (Singh et al., 2019), and organizational design into a cohesive quality ecosystem. Theoretical 
models of hybrid manufacturing quality must therefore be updated to incorporate feedback loops, 
cross-functional governance, and data-driven decision layers as core elements, rather than 
supplementary add-ons. Practically, the findings signal to industry practitioners that quality excellence 
in hybrid systems is no longer contingent on isolated technological breakthroughs but on orchestrating 
multiple layers of control across people, data, and machines. This marks a break from earlier 
assumptions that incremental hardware improvements alone would drive maturity. As such (Sharma 
et al., 2020), the field stands at an inflection point where adopting integrated industrial engineering 
strategies can convert hybrid manufacturing from a niche, high-risk technology into a scalable, 
mainstream production platform. This redefinition aligns with contemporary operations theories 
emphasizing socio-technical integration, positioning hybrid manufacturing quality control as both a 
scientific discipline and a strategic capability—something earlier studies did not anticipate but which 
the present evidence now makes clear (Cubric, 2020). 
CONCLUSION 
This review demonstrates that industrial engineering approaches have fundamentally reshaped quality 
control in hybrid manufacturing, transitioning the field from experimental, high-variability operations 
into structured, data-driven, and economically viable production systems. The synthesis of 128 
reviewed articles with over 12,000 citations revealed that the integration of statistical process control, 
design of experiments, and quality function deployment has substantially improved process capability, 
reduced defect rates, and enhanced first-pass yield across diverse hybrid contexts. These advancements 
are reinforced by the widespread deployment of multi-sensor in-situ monitoring, digital twin–guided 
process planning, and layered feedback loops, which collectively shift quality assurance from post-
process inspection to real-time, predictive intervention. Unlike earlier perceptions that framed hybrid 
quality as inherently unstable and cost-prohibitive, the findings show that when combined with 
organizational maturity, structured training, and cross-functional governance, industrial engineering 
methods can deliver rapid stabilization, sustainable resource use, and measurable returns on 
investment. Furthermore, the emergence of machine learning, process mining, and explainable 
analytics has enabled hybrid systems to achieve predictive quality control capabilities once deemed 
infeasible, while fostering operator trust and operational agility. Nonetheless, persistent challenges 
remain in data interoperability, cross-domain calibration, and human-in-the-loop integration, 
indicating that technological sophistication alone is insufficient without aligned organizational and 
ecosystem-level strategies. Overall, the review establishes that quality in hybrid manufacturing is no 
longer a peripheral afterthought but a core design principle—anchored in integrated socio-technical 
systems that unify process control, real-time data intelligence, and continuous organizational learning. 
This shift positions industrial engineering not merely as a toolkit for defect reduction, but as the central 
framework through which hybrid manufacturing can mature into a scalable, sustainable, and globally 
competitive production paradigm. 
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RECOMMENDATIONS 
Based on the consolidated evidence from this review, it is recommended that organizations seeking to 
enhance quality control in hybrid manufacturing adopt a staged, integrated strategy that aligns 
technological, analytical, and organizational capabilities. Firms should begin by embedding 
foundational industrial engineering methods such as statistical process control and design of 
experiments to establish baseline process stability, ensuring that variability is systematically measured 
and reduced before scaling operations. Once stability is achieved, the next priority should be the 
deployment of multi-sensor in-situ monitoring systems and real-time feedback loops, enabling early 
defect interception and reducing downstream inspection burdens. In parallel, the development of 
digital twin models should be pursued to provide predictive simulations that guide adaptive toolpath 
planning and thermal compensation, thereby preventing defects before they occur. To sustain these 
technological gains, management must invest in organizational enablers, including cross-functional 
teams that combine quality engineers, data analysts, and process operators, as well as structured 
training programs to build operator proficiency in interpreting sensor data and engaging with 
analytics-driven decision tools. Firms should also establish layered process audits, visual management 
systems, and escalation protocols to maintain continuous quality discipline on the shop floor. 
Furthermore, data architecture must be designed with interoperability and edge analytics in mind to 
ensure that sensor data can flow seamlessly across additive and subtractive stages, supporting real-
time control without creating bottlenecks. Finally, organizations should view quality not as a 
compliance burden but as a strategic investment by incorporating cost-of-quality metrics, ROI tracking, 
and sustainability indicators into their governance dashboards, which will help secure executive 
sponsorship and long-term resource commitment. Implementing these recommendations as a cohesive 
roadmap will enable hybrid manufacturing enterprises to achieve not only higher conformance and 
reliability but also faster market responsiveness, lower costs, and stronger competitive positioning in 
an increasingly data-driven industrial landscape. 
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