

Volume: 5; Issue: 3 Pages: 586–602 Accepted: 19 September 2025 Published: 10 October 2025

OPTIMIZING THE U.S. GREEN HYDROGEN ECONOMY: AN INTEGRATED ANALYSIS OF TECHNOLOGICAL PATHWAYS, POLICY FRAMEWORKS, AND SOCIO-ECONOMIC DIMENSIONS

Sharif Md Yousuf Bhuiyan¹; Md Shahadat Hossain²; Saleh Mohammad Mobin³; Mohammad Shahadat Hossain Sikdar⁴; Imtiaz Parvez⁵

- [1]. Doctoral Candidate, Department of Mechanical Engineering, Idaho State University, Idaho, USA Email: sharifmdyousufbhu@isu.edu
- [2]. Graduate Student, Department of Industrial Engineering, Lamar University, Texas, USA Email: mhossain113@lamar.edu
- [3]. Doctoral Candidate, Department of Industrial Engineering, Lamar University, Texas, USA Email: mobinsaleh@gmail.com
- [4]. Graduate Student, Department of Industrial Engineering, Lamar University, Texas, USA Email: mobinsaleh@gmail.com
- [5]. Assistant Professor, Department of Computer Science, Utah Valley University, Utah, USA Email: Imtiaz.Parvez@uvu.edu

Doi: 10.63125/xp8exe64

This work was peer-reviewed under the editorial responsibility of the IJEI, 2025

Abstract

The United States stands at a pivotal juncture in its energy transition, with green hydrogen emerging as a critical enabler for decarbonizing hard-to-abate sectors such as heavy industry, long-haul transportation, and long-duration energy storage. This journal review paper provides a comprehensive analysis of the U.S. perspective on the burgeoning green hydrogen economy, synthesizing current advancements, policy landscapes, and socio-economic implications. The review first examines the rapid technological progress underpinning the hydrogen value chain. It explores innovations in electrolysis, including declining costs for Proton Exchange Membrane (PEM) and Alkaline technologies, and the potential of emerging methods like solar-driven water splitting. Advancements in storage, from high-pressure tanks to geological solutions, and transport, via repurposed pipelines and liquid organic hydrogen carriers (LOHCs), are assessed. The paper also details the expanding applications of green hydrogen, from fertilizer production and refining to fuel cell electric vehicles and power generation. While prior studies have examined hydrogen technology or policy in isolation, this review uniquely integrates technological, regulatory, and socio-economic perspectives to outline a cohesive national roadmap for the U.S. hydrogen economy. It conducts a comparative review of national strategies, highlighting the transformative impact of the U.S. Inflation Reduction Act (IRA), particularly its hydrogen production tax credit (45V), which has positioned the nation as a highly competitive market. This is contrasted with the European Union's targeted demand-side policies and the ambitious export-oriented strategies of nations in the Middle East and North Africa (MENA) region and the Global South, analyzing the implications for global trade and U.S. leadership. The paper concludes by identifying significant knowledge gaps and future research directions. These include the need for robust methodologies to accurately account for emissions across the hydrogen lifecycle (ensuring additionality, temporal, and geographic matching for grid-powered electrolysis), optimizing integrated regional infrastructure, developing standardized safety protocols, and formulating best practices for community engagement and equitable benefit-sharing.

Kevwords

Hydrogen; Hydrogen Economy; US Hydrogen Pathway; Green Hydrogen

INTRODUCTION

The global climate crisis represents one of the most profound challenges of the 21st century, demanding an unprecedented transformation of the world's energy systems. The scientific consensus, articulated by the Intergovernmental Panel on Climate Change (IPCC), calls for rapid and deep decarbonization to limit global warming to 1.5°C above pre-industrial levels and avoid the most catastrophic impacts (IPCC, 2022). In response, the United States, as one of the world's largest historical emitters of greenhouse gases (GHGs), has committed to an ambitious goal of achieving a net-zero emissions economy by 2050 (The White House, 2021). This commitment is not merely an environmental aspiration but a strategic national priority, intertwined with economic competitiveness, energy security, and technological leadership.

The U.S. energy transition is a monumental undertaking, requiring the decarbonization of sectors that collectively form the backbone of the modern economy. While significant progress has been made in decarbonizing the power sector through the rapid deployment of wind, solar, and natural gas (displacing coal), a substantial portion of the economy remains stubbornly reliant on fossil fuels. Key among these "hard-to-abate" sectors are heavy industry (e.g., steel, cement, and chemical production), long-haul transportation (e.g., shipping, aviation, and heavy-duty trucking), and the provision of long-duration energy storage to balance a grid increasingly dependent on variable renewable energy (VRE) sources(Davis et al., 2018). These sectors are considered "hard-to-abate" because electrification with current battery technology is often technologically impractical or economically prohibitive due to requirements for high-temperature heat, high energy density, or seasonal storage (IRENA, 2021a).

It is within this critical gap that hydrogen, specifically *green hydrogen*, emerges as a pivotal solution. Hydrogen is a versatile energy vector that can be produced without carbon emissions and used in a variety of applications without releasing CO2 at the point of use. When produced via electrolysis of water using electricity generated from renewable sources like solar, wind, or geothermal, it is termed "green hydrogen," offering a pathway to deep decarbonization for the most challenging segments of the economy (IRENA, 2021a). The Biden administration's ambitious climate agenda, enshrined in legislation such as the Inflation Reduction Act (IRA) of 2022 and supported by Department of Energy (DOE) initiatives like the "Hydrogen Shot," has catapulted green hydrogen from a niche interest to a central pillar of America's clean energy strategy (U.S. Department of Energy, 2021a; The White House, 2022). This paper argues that the United States is at a pivotal moment, where the convergence of technological innovation, powerful policy incentives, and growing market demand creates an unprecedented opportunity to build a robust green hydrogen economy. However, realizing this opportunity requires a clear-eyed analysis of the technological readiness, policy frameworks, and, crucially, the socio-economic implications of this nascent industry.

The Resurgence of Hydrogen: From Color-Coded Pathways to a Green Future

The concept of a "hydrogen economy" is not new; it has been discussed for decades as a potential future for clean energy(Bockris, 2013). However, past waves of enthusiasm have often faltered due to high costs, technological hurdles, and a lack of consistent policy support. The contemporary resurgence is distinct, driven by the urgent need for decarbonization and the dramatic cost reductions in renewable electricity, which makes green hydrogen increasingly economically viable (BloombergNEF, 2023).

To understand the significance of "green" hydrogen, it is essential to place it within the spectrum of hydrogen production methods, often categorized by a color palette:

- **Grey Hydrogen:** The dominant method today, accounting for roughly 95% of global production, is steam methane reforming (SMR) of natural gas. This process releases significant CO2 emissions (IEA, 2023).
- **Blue Hydrogen:** This is grey hydrogen coupled with carbon capture, utilization, and storage (CCUS) technology, which can mitigate a large portion (up to 90-95%) of the CO2 emissions. It is often viewed as a transitional technology (IEA, 2023).
- **Green Hydrogen:** Produced via electrolysis of water (H2O) using electricity from renewable sources. The process splits water molecules into hydrogen and oxygen, resulting in zero carbon emissions (IRENA, 2021a).

0.28%

1.22%

Hydrogen from fossil fuels

Electrolysis(conventional energy)

Hydrogen from industrial by-production

Electrolysis(renewable energy)

Else

Figure 1: Global Distribution of Hydrogen Production by Source Type

The U.S. national strategy explicitly prioritizes a trajectory from current production towards clean hydrogen, with green hydrogen as the ultimate goal. The DOE's "Hydrogen Shot" aims to reduce the cost of clean hydrogen by 80% to "\$1 for 1 kilogram in 1 decade" ("1-1-1"), a target that would make green hydrogen cost-competitive with conventional fuels (U.S. Department of Energy, 2021a). This ambitious goal is underpinned by the recognition that while blue hydrogen may play a role in the near-term transition, the long-term sustainability and decarbonization potential of the hydrogen economy depend on the widespread adoption of green hydrogen.

The U.S. Policy Landscape: A Paradigm Shift with the Inflation Reduction Act

The U.S. approach to building a hydrogen economy has been fundamentally reshaped by the passage of the Inflation Reduction Act (IRA) in 2022. This landmark legislation represents the most significant climate investment in American history, creating powerful, long-term incentives for clean energy deployment. For hydrogen, the most impactful provision is the creation of a new Clean Hydrogen Production Tax Credit (PTC), known as 45V (The White House, 2022).

Figure 2: The "Hydrogen Shot" Target: Reducing Clean Hydrogen Cost to \$1 per Kilogram Within One Decade

Hydrogen Shot seeks to reduce the cost of clean hydrogen by 80% to
\$1 per 1 kilogram in 1 decade ("111").

1 Dollar

1 Kilogram
1 Decade

The 45V tax credit is a technology-neutral incentive that provides a tiered credit of up to \$3.00 per kilogram of hydrogen produced, based on the lifecycle carbon emissions of the production process. To qualify for the maximum credit, hydrogen must have a carbon intensity of less than 0.45 kg CO2e per kg H2, a standard that effectively mandates green hydrogen or highly efficient blue hydrogen with extensive carbon capture (Larson, 2020). The credit's structure provides unprecedented revenue certainty for project developers, making large-scale green hydrogen projects financially viable for the first time. Analysts project that the IRA could spur a surge in clean hydrogen production, with the U.S. potentially becoming one of the lowest-cost producers globally (BloombergNEF, 2023). Complementing the IRA's market-pull incentives are the technology-push initiatives led by the Department of Energy. The Bipartisan Infrastructure Law (BIL) allocated \$9.5 billion for clean hydrogen initiatives, including \$8 billion to create a network of Regional Clean Hydrogen Hubs (H2Hubs) across the country (U.S. Department of Energy, 2021b). These H2Hubs are designed to demonstrate the entire hydrogen value chain – from production and storage to distribution and end-use – in geographically diverse regions, each with unique feedstock advantages and end-use applications. This approach aims to kickstart a national hydrogen ecosystem, foster innovation, and address regional energy needs. Together, the IRA and BIL-funded programs create a powerful, synergistic framework intended to accelerate the development of a domestic clean hydrogen market.

Clean hydrogen needs \$3.4 trillion in investments until 2050, much of this will come from the private sector By sector By region Mt Mt 500 500 2021 Rest of world Power Hydrogen \$3.4 trillion Europe Other 400 400 Rail investment US Aviation opportunity Shipping 300 300 Indonesia Road Commercial b. Australia Residential b. 200 200 Other industry Japan Cement Aluminum 100 100 India ■ Steel ■ Energy industry ■ China 2000 2010 2020 2030 2040 2050 2010 2020 2030 2040 2000 Source: BloombergNEF. Note: "Energy industry" includes legacy uses as well Source: BloombergNEF. Note: Mt is million metric tons

Figure 3: Global Clean Hydrogen Investment Needs by Sector and Region, 2000-2050

Notwithstanding significant recent momentum, the trajectory toward a fully realized green hydrogen economy in the United States is characterized by persistent uncertainties and substantive knowledge deficits. Critical impediments span technological domains-including electrolyzer longevity and logistical efficiency – alongside unresolved policy questions concerning carbon accounting methodologies for fiscal incentives, and socio-economic complexities related to labor market effects and distributive justice. This landscape necessitates a systematic, interdisciplinary synthesis of existing scholarship to delineate prevailing barriers and establish a prioritized agenda for subsequent inquiry. Accordingly, this review undertakes a holistic examination of the U.S. posture toward a green hydrogen economy, guided by four principal objectives. First, it will critically evaluate the present condition and prospective development of core technologies comprising the hydrogen value chain, from production and storage to distribution and final application. A second aim involves a comparative analysis of nascent U.S. policy and regulatory architectures, situating them within the context of international frameworks emerging from the European Union, MENA region, and Global South. Third, the analysis will assess the multi-dimensional socio-economic ramifications of domestic hydrogen deployment, giving particular attention to energy security, labor dynamics, equity, and social acceptance. Finally, the paper will integrate these analyses to pinpoint enduring research voids and propose structured directions for future investigation, policy formulation, and multi-stakeholder engagement. Through the pursuit of these objectives, this work intends to inform the construction of a more robust national strategy-one capable of harnessing hydrogen's potential to advance decarbonization imperatives while simultaneously promoting a competitive, secure, and equitable energy future for the United States.

LITERATURE REVIEW

as own-use for energy-producing industries. Mt is million metric tons.

The Global Context: U.S. Leadership in a Competitive World

The development of a U.S. green hydrogen economy does not occur in a vacuum. It is situated within a fiercely competitive and strategically vital global landscape. Other major economies are also making massive bets on hydrogen. The European Union (EU) has unveiled its REPowerEU plan, which aims to produce 10 million tonnes and import 10 million tonnes of renewable hydrogen by 2030, largely to enhance energy security following Russia's invasion of Ukraine (European Commission, 2022). The EU is focusing on creating demand through quotas in industry and transport, presenting both a potential market for U.S. exports and a regulatory benchmark. Meanwhile, resource-rich regions like the Middle East and North Africa (MENA), particularly Saudi Arabia, the UAE, and Oman, are leveraging their abundant solar resources and vast land areas to position themselves as low-cost exporters of green

hydrogen and its derivatives, such as ammonia (IRENA, 2022). Similarly, countries in the Global South with high renewable potential, such as Chile, Namibia, and India, are developing national hydrogen strategies to attract investment and become key players in the emerging global hydrogen trade (IRENA, 2021b). This global race presents the United States with both opportunities and challenges. The IRA's generous subsidies have already attracted significant international investment, positioning the U.S. as a leading destination for clean energy capital. However, to secure a leadership role, the U.S. must not only foster domestic production but also navigate complex issues of international standards, trade, and diplomacy. The "green" attribute of hydrogen must be verifiable and mutually recognized to facilitate a global market. Therefore, U.S. policy and technological choices will have significant implications for international collaboration and competition.

The Critical Socio-Economic Dimension

The establishment of a hydrogen economy, while contingent upon technological advancement and enabling policy frameworks, remains an incomplete project without the concurrent resolution of its attendant socio-economic dimensions. The durability of this energy transition will be measured not merely by technical metrics but by its distributional consequences and its capacity to foster equitable outcomes. This imperative is reflected in federal climate policy, which explicitly links the expansion of clean energy to the broad-based dissemination of its advantages (The White House, 2021). Consequently, socio-economic considerations must be constitutive elements of the hydrogen ecosystem's architecture, not ancillary concerns. Critical among these considerations is the domain of employment and labor. Projections of job creation in manufacturing, construction, and operations, while substantively positive, are functionally dependent upon parallel investments in workforce development. A targeted focus on reskilling programs, particularly for populations and regions currently reliant on fossil fuel economies, is a prerequisite for converting hypothetical demand into tangible opportunity. Furthermore, the historical propensity to concentrate energy infrastructure and its associated burdens within low-income and minority communities necessitates a prophylactic policy approach. The avoidance of such distributive injustices requires institutionalizing robust community engagement and formalizing benefit-sharing agreements from a project's inception. The phenomenon of public acceptance introduces another critical variable. Social license, a prerequisite for widespread infrastructure deployment, is influenced by complex risk perceptions, often rooted in historical events or technical uncertainties. Cultivating trust is therefore a function of demonstrable safety protocols, transparent regulatory oversight, and participatory decision-making processes. In parallel, a domestic hydrogen capacity presents a strategic imperative for energy security, offering a mechanism to insulate core industrial and transport sectors from the volatility of global hydrocarbon markets while enhancing grid reliability through long-duration storage. A failure to integrate these socio-structural factors at a foundational level invites significant operational and political risk. Project delays, legal challenges, and a deficit of public trust represent probable outcomes that could effectively undermine the decarbonization objectives the hydrogen economy is intended to advance.

Technological Landscape of Hydrogen in the U.S.

The realization of a green hydrogen economy in the United States is fundamentally contingent upon advancements across the entire technological value chain: production, storage, transportation, and enduse applications. This section provides a comprehensive review of the current state, key challenges, and future trajectory of these critical technologies, with a specific focus on developments and potential within the U.S. context. The environmental credential of hydrogen is defined at the point of production. While steam methane reforming (SMR) of natural gas dominates the current U.S. hydrogen supply, primarily for refinery and ammonia production, the strategic focus has shifted decisively toward carbon-free methods (EIA, 2022).

Water Electrolysis Technologies

Electrolysis, the process of splitting water (H₂O) into hydrogen (H₂) and oxygen (O₂) using an electric current, is the cornerstone of green hydrogen production. Several electrolyzer technologies are at various stages of commercial maturity, each with distinct advantages and limitations.

 Alkaline Electrolyzers (AEL): This is the most mature and commercially established technology, with a history spanning decades. AELs use a potassium hydroxide (KOH) solution as an electrolyte and operate at relatively low pressures (<30 bar). Their primary advantages are lower capital costs and long operational lifetimes (Carmo et al., 2013). However, they have a slower response time to variable power inputs and lower operational flexibility, making them less ideally suited for direct coupling with intermittent renewable sources like solar and wind without additional balance-of-plant components (Buttler & Spliethoff, 2018). In the U.S., AELs are considered a viable option for large-scale, centralized production facilities, particularly where a relatively stable power supply is available.

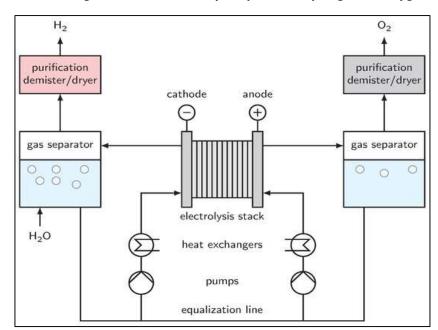


Figure 4: Schematic Diagram of a Water Electrolysis System for Hydrogen and Oxygen Production

Proton Exchange Membrane Electrolyzers (PEM)

PEM electrolyzers represent a more advanced technology, utilizing a solid polymer electrolyte membrane. They operate at higher current densities, can be highly pressurized (up to 80 bar), and offer rapid response times, making them exceptionally well-suited for grid balancing and direct integration with variable renewables (Ayers et al., 2019). The primary challenges for PEM technology have been its higher capital cost, largely due to the reliance on platinum-group metal catalysts (e.g., platinum and iridium), and concerns about membrane durability under fluctuating loads (Babic et al., 2017). Significant U.S. research efforts, supported by DOE initiatives like H2NEW, are focused on developing low-iridium or iridium-free catalysts and more durable membranes to reduce costs and enhance performance (U.S. DOE, 2021a).

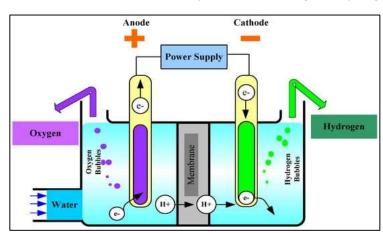


Figure 5: Operational Mechanism of PEM Electrolysis: Water Splitting into Hydrogen and Oxygen

Solid Oxide Electrolyzer Cells (SOEC)

SOECs operate at high temperatures (700-850°C) and use a solid ceramic electrolyte. Their key advantage is high electrical efficiency, as the elevated temperature reduces the electrical energy required for the water-splitting reaction(Hauch et al., 2020). This makes them particularly attractive for integration with industrial waste heat or advanced nuclear reactors (producing "pink" or "red" hydrogen), where the thermal energy can be utilized. The main drawbacks are the slow start-up times and challenges associated with long-term material stability under thermal cycling, placing them at an earlier stage of commercial deployment compared to AEL and PEM (Brisse et al., 2008). U.S. national laboratories, including Idaho National Laboratory, are leading research into SOEC durability and system integration.

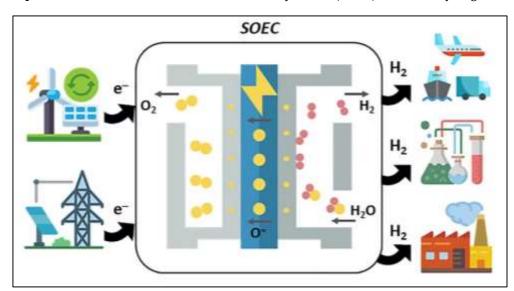


Figure 6: Operational Mechanism of a Solid Oxide Electrolysis Cell (SOEC) for Green Hydrogen Generation

Anion Exchange Membrane Electrolyzers (AEM)

AEM technology is an emerging pathway that seeks to combine the advantages of AEL (low cost, non-precious metal catalysts) and PEM (solid electrolyte, compact design). AEMs operate with an alkaline chemistry but use a solid polymer membrane, potentially enabling the use of nickel-based catalysts instead of platinum-group metals (Varcoe et al., 2014). While still in the research and development (R&D) and pilot-scale stage, AEM holds promise for significantly lowering capital costs if durability and performance challenges can be overcome, making it a key area for U.S. innovation (Miller, 2022).

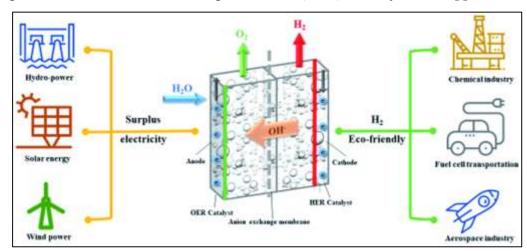


Figure 7: Schematic of anion exchange membrane (AEM) electrolysis with applications

Role of U.S. Renewable Resources

The "green" attribute of hydrogen is intrinsically linked to the source of electricity. The vast and diverse renewable energy potential of the United States provides a formidable foundation for a distributed green hydrogen industry. Solar and Wind in the Midwest and Southwest: Regions like the Southwest (e.g., Arizona, Nevada, California) boast the highest solar irradiance in the nation, while the Great Plains ("Wind Corridor") offers world-class wind resources. These regions are prime candidates for gigawatt-scale, dedicated renewable hydrogen production facilities. The key challenge is the intermittent nature of these resources, necessitating either large-scale energy storage, hybrid renewable systems (solar+wind), or, controversially, a connection to the grid to ensure high electrolyzer capacity factors(Saur & Ainscough, 2011). The ongoing debate around "additionality" and "temporal matching" for the 45V tax credit centers on ensuring that grid-connected electrolyzers actually drive the deployment of new renewable capacity rather than diverting existing clean electricity or increasing reliance on fossil fuels during periods of low renewable generation (Bistline et al., 2023). Hydropower and Geothermal in the Northwest and Alaska: The Pacific Northwest has a legacy of abundant hydropower, which provides a stable, baseload renewable electricity source ideal for hydrogen production. Similarly, geothermal resources in Western states offer a firm, carbon-free power source. These resources can support hydrogen hubs focused on providing reliable clean fuel for industrial applications and heavy-duty transportation corridors.

Emerging Production Pathways

Beyond electrolysis, other production pathways are being explored to diversify the clean hydrogen portfolio. Biomass Gasification and Reforming: Hydrogen can be produced from biomass sources (e.g., agricultural residues, forestry waste) through thermochemical processes like gasification or pyrolysis. If coupled with carbon capture, this can result in net-negative carbon emissions. This pathway holds potential in agricultural regions of the U.S., such as the Midwest, offering a dual benefit of waste management and energy production, though challenges related to feedstock logistics and gasifier efficiency remain. Nuclear-Based Hydrogen (Pink Hydrogen): Existing light-water reactors and future advanced nuclear technologies can provide the constant heat and electricity required for high-efficiency hydrogen production, either through low-temperature electrolysis or, more efficiently, through high-temperature thermochemical processes like the sulfur-iodine cycle coupled with SOECs (Yildiz & Kazimi, 2006). The DOE is actively funding demonstrations, such as at the Nine Mile Point Nuclear Station in New York, to prove the feasibility of nuclear-hydrogen co-generation, which could provide a firm, zero-carbon hydrogen source independent of weather conditions (U.S. DOE, 2022).

Storage and Transportation: Bridging Production and Demand

A fundamental logistical challenge confronting the hydrogen economy involves the geographic divergence between prospective centers of large-scale production and distributed consumption nodes. This spatial discrepancy elevates the critical importance of developing storage and transportation modalities that are both technically efficient and economically viable. Pipeline transmission represents the most cost-effective solution for moving substantial hydrogen volumes across extended distances. While an existing U.S. pipeline network of approximately 1,600 miles currently services Gulf Coast industrial applications (EIA, 2022), material compatibility presents a primary technical constraint. Hydrogen embrittlement of steel pipelines necessitates mitigation strategies such as blending limited concentrations into natural gas streams or deploying specialized liner technologies (Haeseldonckx & D'haeseleer, 2007). The prohibitive capital requirements for new dedicated infrastructure, compounded by regulatory complexities, position a national pipeline network as a long-term objective requiring substantial investment.

For transport scenarios where pipelines prove impractical, cryogenic liquefaction offers an alternative, despite thermodynamic penalties. The liquefaction process at -253°C consumes approximately 30% of the hydrogen's inherent energy content(Barthélémy et al., 2017). Nevertheless, the superior energy density of liquid hydrogen enables practical transport via rail or truck, building upon historical expertise from aerospace applications. Operational challenges persist regarding continuous boil-off management and safety protocols during handling and transit. Chemical carrier molecules present a third pathway that circumvents the difficulties of pure hydrogen handling. Ammonia, with its established global logistics chain and high hydrogen mass fraction (17.6%), enables hydrogen transport

through conventional shipping methods (Armijo & Philibert, 2020). The significant energy investment required for both synthesis and catalytic cracking, alongside ammonia's toxicity, constitute notable limitations. Alternatively, Liquid Organic Hydrogen Carriers (LOHCs) permit hydrogen transport at ambient conditions using existing liquid fuel infrastructure. The technology remains developmental, with ongoing research targeting improved storage capacity and reversible dehydrogenation kinetics (Teichmann et al., 2012).

End-Use Applications: Decarbonizing Hard-to-Abate Sectors

The value of green hydrogen is ultimately realized in its applications, particularly in sectors where direct electrification is challenging.

Transportation

The transportation sector represents a critical domain for hydrogen deployment, particularly in applications where the energy density and refueling constraints of battery-electric systems present operational limitations. Within this sector, fuel cell electric vehicles (FCEVs) for passenger transport have established only a limited foothold in specific regional markets. A more consequential near-term application exists in heavy-duty trucking, where hydrogen fuel cells provide a combination of operational range and refueling velocity that closely mirrors conventional diesel-powered logistics. This performance profile makes the technology particularly suitable for high-utilization freight corridors. The commercial viability of this segment, however, remains inextricably linked to the concurrent establishment of a comprehensive refueling network, an objective central to several federally-supported Hydrogen Hub proposals. For the maritime and aviation sectors, hydrogen and its chemical derivatives constitute a narrow set of technologically plausible pathways for deep decarbonization. In shipping, the direct combustion of ammonia or its use in fuel cells presents a potential alternative to heavy fuel oils. For aviation, the synthesis of kerosene-like fuels using hydrogen as a primary feedstock is under active investigation. These applications, however, represent long-term transitions, contingent upon resolving profound technical and regulatory challenges before achieving commercial scale (McKinsey, 2022).

Power Generation and Grid Balancing

Hydrogen's capacity for long-duration energy storage introduces a critical reliability component for power systems with high renewable penetration. During extended periods of low renewable generation or peak demand, hydrogen-powered turbines and fuel cells can provide dispatchable generation. This functionality addresses a key limitation of conventional battery storage, which remains economically constrained for seasonal storage applications (Blanco & Faaij, 2018). The inter-seasonal transfer of energy, converting summer solar surplus to hydrogen for winter power generationexemplifies this strategic value. A separate pathway involves the integration of hydrogen into existing thermal generation assets. Blending hydrogen with natural gas in conventional gas turbines offers a transitional decarbonization strategy for power generation infrastructure. Current technical constraints, primarily related to combustion dynamics and emissions control, typically restrict blend ratios below 30 percent. Nevertheless, technological evolution continues, with manufacturers actively developing turbine systems designed for operation on pure hydrogen.

Industrial Applications

The industrial sector, accounting for approximately 23% of national CO₂ emissions, presents some of the most intractable decarbonization challenges due to its dependence on fossil fuels for both process heat and chemical feedstocks (U.S. EPA, 2022). Within this sector, several high-impact applications for green hydrogen are emerging. Ammonia synthesis via the Haber-Bosch process, a cornerstone of global agriculture, currently derives its hydrogen feedstock from natural gas. The direct substitution of this grey hydrogen with electrolytically produced alternatives represents a substantial and technically straightforward mitigation opportunity (Wang et al., 2018). In primary steel production, hydrogen offers a transformative pathway by serving as a clean reducing agent in Direct Reduced Iron (DRI) processes, displacing metallurgical coal and yielding water vapor as the primary emission. This "green steel" concept, while the subject of considerable industrial experimentation in Europe, is now attracting nascent interest within the United States (Vogl et al., 2021). Furthermore, petroleum refineries, already significant consumers of hydrogen for desulfurization, could achieve immediate emissions reductions by transitioning their existing hydrogen demand from steam methane reforming to green hydrogen

sources. The technological ecosystem for green hydrogen in the United States is characterized by rapid, though uneven, advancement. Persistent obstacles related to cost-competitiveness, systemic efficiency, and infrastructural scale coexist with significant progress in electrolysis, renewable integration, and end-use applications. The ultimate translation of this technical potential into a functional energy system will be contingent not merely on continued research, but on the strategic deployment of demonstration projects and the establishment of durable market signals that catalyze private investment and infrastructure development.

Policy and Regulatory Perspectives (U.S. Focus)

The technological potential of green hydrogen, as outlined in the previous section, remains latent without a robust and coherent policy and regulatory framework to catalyze investment, de-risk innovation, and create sustainable markets. The United States has, in a remarkably short period, constructed a comprehensive national strategy for clean hydrogen, primarily through landmark federal legislation. This section analyzes the multi-layered U.S. policy landscape, from federal drivers and state-level initiatives to public-private partnerships, and contextualizes these efforts within the fiercely competitive global arena.

A Paradigm Shift in National Strategy

For decades, U.S. hydrogen policy was characterized by intermittent research funding and a lack of sustained market incentives. This changed decisively with the passage of the Bipartisan Infrastructure Law (BIL) in 2021 and the Inflation Reduction Act (IRA) in 2022, which together created a synergistic framework of technology-push and market-pull mechanisms unprecedented in scale and longevity.

The Inflation Reduction Act (IRA) and the 45V Tax Credit

Anchoring U.S. clean hydrogen policy, the technology-neutral Production Tax Credit under Internal Revenue Code Section 45V constitutes a globally significant market intervention, restructuring international investment calculations for hydrogen infrastructure. Its tiered subsidy mechanism, offering up to \$3.00 per kilogram, is contingent upon lifecycle emissions intensity, with the maximum credit reserved for production below 0.45 kg CO₂e per kg H₂—a threshold effectively requiring electrolytic or high-efficiency carbon-capture production pathways (Larson, 2020).

The provision's architectural strength derives from its decadal duration for qualified projects, establishing the revenue predictability essential for capital-intensive infrastructure development. Its interoperability with complementary incentives for renewable generation and energy storage creates a potentially synergistic fiscal environment for integrated energy systems. Preliminary modeling indicates this policy framework could precipitate levelized hydrogen costs among the world's lowest, potentially achieving the Department of Energy's "Hydrogen Shot" target ahead of its scheduled timeline. The credit's environmental efficacy, however, remains conditional upon regulatory implementation. A consequential policy debate centers on accounting methodologies for grid-powered electrolysis, particularly the proposed "three pillars" framework. This includes requirements for incremental clean generation capacity, temporal correlation between hydrogen production and renewable generation, and geographical boundaries for resource deliverability (Jenkins & Thernstrom, 2017). The Treasury Department's forthcoming determinations on these parameters will fundamentally direct the industry's geographical distribution, technological configuration, and emissions profile. Stringent implementation would likely promote integrated renewable-storage systems at the expense of higher near-term costs, whereas more flexible rules might accelerate deployment while creating potential emissions trade-offs(Ueckerdt et al., 2021).

The Department of Energy's Hydrogen Shot and H2Hubs Program

Operating in concert with the IRA's demand-side incentives, BIL-authorized programs administered by the Department of Energy constitute a supply-side technology push. The "Hydrogen Shot" initiative establishes a definitive national objective: an 80 percent reduction in clean hydrogen costs, targeting \$1 per kilogram within a ten-year timeframe (U.S. DOE, 2021a). This benchmark focuses the department's research and development agenda on critical areas including electrolyze advancement, systemic efficiency gains, and materials cost reduction.

The most substantial BIL allocation directs \$8 billion toward the Regional Clean Hydrogen Hubs (H2Hubs) program, which seeks to establish multiple geographically distinct networks integrating production, consumption, and midstream infrastructure. This intervention directly confronts the

coordination failure that has historically impeded hydrogen development—the mutual dependency between production capacity and end-use demand(Saur & Ainscough, 2011). The program's implementation at a regional scale pursues three concurrent objectives: validating complete technological value chains under commercial conditions; realizing cost reductions through scaled deployment and experiential learning; and cultivating industrial agglomerations that generate self-reinforcing innovation (U.S. DOE, 2021b). Selected hub locations manifest a deliberate geographical and technological diversity. A Pacific Northwest hub will emphasize renewable electricity applications, while an Appalachian hub incorporates nuclear energy and natural gas with carbon capture. The Gulf Coast hub leverages existing industrial infrastructure and pipeline networks for decarbonization. This regionally differentiated strategy aims to stimulate a national market architecture that capitalizes on distinct regional competitive advantages.

State-Level Leadership

Federal policy establishes a foundational framework, yet state-level implementation remains decisive, with regional initiatives reflecting localized resource endowments and political economies. This decentralized governance model facilitates policy experimentation across distinct jurisdictional contexts. California's regulatory approach has historically prioritized transportation sector transformation. Its Low Carbon Fuel Standard generates a credit-trading mechanism that monetizes the carbon intensity differential of transportation fuels, establishing a significant revenue source for hydrogen producers (California Air Resources Board, 2022). This demand-pull strategy, combined with direct infrastructure investment, has cultivated the nation's most advanced fuel cell vehicle market, demonstrating how subnational demand-side mechanisms can complement federal production subsidies. Texas exemplifies a contrasting production-focused strategy, leveraging exceptional renewable resources and existing energy infrastructure. The state's policy orientation emphasizes regulatory streamlining and private investment attraction rather than creating additional subsidy layers. This approach capitalizes on the Gulf Coast's extensive hydrogen pipeline network and concentrated industrial demand, positioning the region as a cost-competitive export hub (EIA, 2022). Northeastern and Midwestern states frequently incorporate hydrogen within broader climate policy architectures. New York's strategy emphasizes hydrogen's potential for long-duration storage to enhance grid reliability alongside renewable deployment, while simultaneously addressing hard-toabate industrial emissions (New York State Energy Research and Development Authority, 2023). These jurisdictions typically exhibit greater policy attention to distributive equity, implementing safeguards against disproportionate environmental burdens on vulnerable communities.

Public-Private Partnerships and Innovation Funding

The scale of the hydrogen transition necessitates deep collaboration between government, industry, and academia. Public-private partnerships (PPPs) are a cornerstone of the U.S. strategy to bridge the "valley of death" between laboratory innovation and commercial deployment. The H2Hubs program itself is a massive PPP, requiring significant cost-share from private partners. Beyond this, the DOE's **H2@Scale initiative** has for years convened stakeholders to identify R&D needs and collaborative opportunities across the value chain (U.S. DOE, 2020). Funding for early-stage research is channeled through the DOE's Office of Energy Efficiency and Renewable Energy (EERE) and the **Advanced Research Projects Agency-Energy (ARPA-E)**, which supports high-risk, high-reward technologies. ARPA-E programs like "DE-FOA-0002923: Innovative Natural Gas Technologies" have funded breakthroughs in methane pyrolysis for turquoise hydrogen and advanced electrolysis concepts (ARPA-E, 2023). These targeted investments in foundational science and engineering are essential for maintaining long-term U.S. technological leadership beyond the current generation of technologies.

U.S. Competitiveness in the Global Arena

The strategic development of hydrogen in the United States occurs within a contested global landscape, simultaneously reacting to and influencing international dynamics. A competitive triad comprising the U.S., European Union, and China is actively shaping the emerging global hydrogen market through divergent yet impactful approaches. European strategy, accelerated by the REPowerEU initiative, prioritizes demand-side regulation and import diversification to bolster energy security. Policy mechanisms under development include Carbon Contracts for Difference to bridge the cost gap for

industrial hydrogen use, alongside proposed consumption mandates in specific sectors (European Commission, 2022). The EU's parallel establishment of rigorous sustainability criteria for hydrogen production threatens to establish de facto global trade standards. While the IRA's production subsidies potentially position the U.S. as a low-cost supplier to European markets, this advantage could be neutralized by emerging "green protectionism" through carbon border adjustments or restrictive rules of origin (Mehling et al., 2023). China's state-directed industrial policy focuses on supply chain domination, particularly in electrolyzer manufacturing. Through massive scale economies and vertical integration, China has become the global leader in electrolyzer production and deployment, aggressively driving down technology costs (IEA, 2023). This manufacturing supremacy presents a structural challenge to Western equipment suppliers, prompting a U.S. policy response centered on supply chain resilience through domestic content provisions, seeking to avert the import dependencies that characterized the solar industry. The United States consequently occupies a distinctive position, combining the IRA's substantial fiscal support, a resource endowment conducive to low-cost production, and a robust innovation ecosystem. Realizing this competitive potential necessitates effective execution of the H2Hubs initiative, finalization of environmentally credible 45V regulations, and cultivation of resilient domestic supply chains – all while navigating the complex geopolitics of an incipient global hydrogen trade. The emergent U.S. policy architecture for clean hydrogen, while powerful in its integration of fiscal incentives and strategic demonstration, now confronts the more complex challenge of regulatory implementation, market formation, and international positioning essential for achieving its decarbonization objectives.

Socio-Economic Implications in the U.S.

The transition to a green hydrogen economy is not merely a technological or policy challenge; it is a socio-economic transformation with profound implications for American workers, communities, and national security. While the potential benefits are substantial—including job creation, enhanced energy independence, and the revitalization of industrial regions—they are not guaranteed. A failure to proactively address issues of equity, justice, and workforce transition could exacerbate existing inequalities and create new barriers to achieving a just and sustainable energy future. This section examines the critical socio-economic dimensions of hydrogen deployment in the United States.

Job Creation and Workforce Development

The development of a domestic green hydrogen value chain portends substantial employment effects across multiple economic sectors. Projections indicate potential support for hundreds of thousands of jobs by 2030, with expansion continuing as market maturity increases (NASEO & EFI, 2021). These employment opportunities manifest across three primary domains. Manufacturing represents a critical sector for job creation, with demand emerging for electrolyzers, fuel cells, compression systems, and specialized containment technologies. Federal industrial policy explicitly targets the revitalization of domestic manufacturing capacity through production incentives, potentially generating skilled positions in regions affected by industrial contraction (Bistline et al., 2023). The construction phase encompassing production facilities, pipeline networks, and refueling infrastructure will generate substantial temporary employment requiring specialized trades expertise (Laitner et al., 2022). Following construction, permanent operational positions will emerge in facility management, pipeline operations, and equipment maintenance, constituting stable employment requiring technical proficiency.

The translation of this employment potential into realized workforce development faces significant implementation challenges. The technical competencies demanded by hydrogen systems—ranging from advanced mechanical systems to specialized safety protocols—frequently exceed current labor market capabilities. A particular imperative involves facilitating occupational transitions for workers displaced from fossil fuel industries, who possess relevant infrastructure experience but require targeted skill augmentation(Carley & Konisky, 2020). Successful workforce development will necessitate coordinated initiatives between federal agencies, educational institutions, and industrial entities to prevent emergent skill shortages from constraining industry growth.

Regional Equity Considerations

The territorial distribution of hydrogen-related benefits and burdens will inevitably reflect the United

States' heterogeneous economic geography. Disparities in renewable resource endowments, pre-existing infrastructure, and industrial composition create fundamentally different regional prospects, generating distinct equity considerations. Areas possessing superior renewable resources—particularly the wind corridors of the Great Plains and solar-rich southwestern regions—stand to capture significant economic advantages through hydrogen production. This development pathway could stimulate rural economic revitalization and counter demographic decline (Bistline et al., 2023). The industrial Midwest similarly presents a compelling case for hydrogen-related reindustrialization, leveraging its manufacturing legacy and concentrated demand from emissions-intensive industries. The Department of Energy's H2Hubs initiative explicitly acknowledges these geographical variations, seeking to distribute economic activity according to regional competitive advantages.

Conversely, communities with economic dependencies on fossil fuel extraction face substantial transition risks. The spatial mismatch between contracting carbon-intensive employment and emerging clean energy opportunities presents a formidable structural challenge(Carley & Konisky, 2020). The occupational skills required for offshore drilling, for instance, demonstrate limited transferability to electrolyzer manufacturing located in different regions. Without deliberate policy intervention—including regional diversification strategies, customized workforce development, and targeted community investment—these areas risk accelerated economic deterioration. The Justice40 initiative represents a federal acknowledgment of this imperative, directing investment benefits toward disadvantaged communities (The White House, 2021).

Infrastructure siting decisions present additional distributive consequences. The historical concentration of energy infrastructure in low-income and minority communities has created persistent environmental inequities (Bullard, 2000). Avoiding the replication of these patterns within hydrogen development requires institutionalizing rigorous community engagement protocols, conducting transparent environmental impact assessments, and implementing safeguards that prioritize the welfare of frontline populations.

Community Acceptance and Public Perception

The viability of large-scale hydrogen infrastructure ultimately depends on securing social license, making community acceptance a critical determinant of deployment velocity. Socio-political acceptance emerges from complex interactions between perceived risks, anticipated benefits, and institutional credibility. Safety perceptions constitute a fundamental dimension of public apprehension. Despite engineering advances, hydrogen's flammability and historical associations generate persistent concern. While technical assessments often compare hydrogen favorably to conventional fuels, effective risk communication and documented safety performance remain essential, particularly regarding infrastructure in populated areas. Acceptance is further mediated by considerations of environmental justice. Distributive justice concerns the allocation of project benefits and burdens, while procedural justice addresses the fairness of decision-making processes (Jenkins & Thernstrom, 2017). Communities with historical experiences of marginalization frequently exhibit skepticism toward developer and government assurances, necessitating early, transparent engagement to prevent opposition that could impede project development. Empirical evidence suggests acceptance correlates strongly with partnership-based engagement models, tangible local benefits, and independent technical review. Consequently, successful hydrogen deployment requires complementing technical standards with structured community involvement frameworks and equitable benefit-distribution mechanisms.

Energy Security: Reducing Reliance on Volatile Imports

A domestic green hydrogen infrastructure offers substantial energy security advantages by mitigating exposure to volatile global hydrocarbon markets. The substitution of imported fossil fuels with domestically synthesized alternatives could insulate critical economic sectors from price shocks and supply disruptions(McCauley et al., 2019). This strategic diversification would particularly benefit industrial and heavy transport sectors currently dependent on internationally traded energy commodities. Hydrogen's capacity for long-duration energy storage simultaneously enhances grid resilience. The inter-seasonal transfer of renewable energy—converting generation surpluses into storable hydrogen—strengthens system reliability against both meteorological variability and physical disruptions (Blanco & Faaij, 2018). This storage characteristic supports a more autonomous electricity

network less vulnerable to delivery interdependencies.Internationally, hydrogen development presents geopolitical opportunities through technology leadership and potential energy exports. The establishment of a zero-carbon export commodity could parallel the strategic position currently occupied by liquefied natural gas, while assisting allied nations in diversifying their energy portfolios (IRENA, 2022). This export potential, however, necessitates careful calibration against domestic decarbonization priorities and equitable benefit distribution. The socio-economic dimensions of hydrogen development consequently demand equivalent consideration to technological and policy factors. Successful implementation requires deliberate planning that addresses employment quality, regional equity, and community trust alongside infrastructure deployment. Moving beyond technical implementation to embrace distributive justice and procedural equity remains essential for constructing a hydrogen economy that delivers comprehensive national benefits.

Challenges to U.S. Hydrogen Development

Despite the powerful policy impetus and significant technological potential outlined in previous sections, the pathway to a mature and sustainable green hydrogen economy in the United States is fraught with substantial challenges. These barriers are not merely technical but are deeply intertwined with economic, infrastructural, regulatory, and political factors. A clear-eyed assessment of these hurdles is essential for crafting effective strategies to overcome them. This section analyzes the most critical challenges: the persistent high costs of production, the vast infrastructure gap, policy uncertainties, and the risk of technological lock-in that could undermine long-term decarbonization goals.

METHODS

The study employed a descriptive qualitative research design to systematically examine, interpret, and explain the observed phenomena within their real-world context. This method was selected for its capacity to capture the complexity, depth, and contextual richness of human experiences, practices, and systems rather than quantifying them through statistical analysis. The descriptive qualitative approach enables a thorough exploration of participants' perceptions, attitudes, and behaviors, emphasizing the meanings they attribute to events or processes. Data were collected from multiple sourcessuch as documents, reports, interviews, and visual materials to ensure a comprehensive understanding of the subject matter. The analysis involved identifying patterns, themes, and relationships across the dataset while maintaining a grounded connection to the empirical evidence. Each source was carefully coded, categorized, and compared using an inductive approach, allowing insights to emerge organically without imposing preconceived frameworks or theories. This approach facilitated an in-depth examination of how and why specific phenomena occur, aligning with the study's objective of producing detailed, context-sensitive interpretations. In this study, data analysis followed a systematic and iterative process involving several stages: familiarization, coding, categorization, and synthesis. Initially, all materials were read repeatedly to ensure immersion in the data. Codes were then assigned to meaningful units of text, representing ideas, actions, or events relevant to the research questions. These codes were grouped into broader categories that captured recurring themes and conceptual patterns. Throughout this process, the researcher employed constant comparison to identify similarities and differences within and across the data sources. Analytical rigor was maintained through triangulation, peer debriefing, and transparent documentation of interpretive decisions. This ensured the credibility, dependability, and confirmability of the findings. Ultimately, the descriptive qualitative analysis yielded a nuanced understanding of the research phenomenon, emphasizing the "what" and "how" aspects of human and organizational behavior while situating interpretations within their natural and contextual settings.

FINDINGS

The High Cost of Green Hydrogen Production

The economic viability of green hydrogen remains its principal barrier to widespread adoption, with production costs substantially exceeding those of conventional hydrogen and competing decarbonization pathways. The levelized production cost is predominantly determined by electrolyzer capital expenditures and renewable electricity procurement expenses(Glenk & Reichelstein, 2019). Electrolyzer system costs, despite notable reductions in recent years, continue to impose significant capital burden. Future cost trajectories depend on manufacturing scale economies,

technological enhancements that diminish reliance on precious metals, and design standardization (Sathre et al., 2022). While federal policy explicitly targets these cost drivers, persistent vulnerabilities in critical mineral supply chains and uncertain market expansion complicate achievement of projected cost reductions. Electricity procurement constitutes the dominant cost component, representing 50-70% of final hydrogen production expense. The economic challenge extends beyond simple renewable energy pricing to encompass capacity factor optimization. Facilities relying exclusively on intermittent renewables face higher per-unit costs due to capital underutilization. Grid interconnection presents an alternative for improving utilization, though this introduces complications regarding emissions accounting and tax credit eligibility (Jenkins & Thernstrom, 2017). The fundamental economic challenge involves securing firm, carbon-free electricity without incurring prohibitive costs from renewable overbuilding and storage integration. Even with substantial production subsidies, green hydrogen must achieve cost competitiveness not merely against conventional alternatives but also against direct electrification solutions. In numerous applications, including light-duty transportation and lowtemperature heating, battery and heat pump technologies demonstrate superior efficiency and economics(Ueckerdt et al., 2021). Consequently, hydrogen's economically viable applications remain largely restricted to sectors where technical constraints limit electrification alternatives, with market expansion contingent upon continued rapid cost reduction.

The Vast Infrastructure Gap

The establishment of a functional hydrogen economy is fundamentally constrained by underdeveloped midstream infrastructure, creating a classic coordination dilemma wherein production investment awaits demand certainty while demand development requires supply reliability(Saur & Ainscough, 2011). This interdependence presents a substantial barrier to market formation. Pipeline transport faces particular limitations. The existing dedicated hydrogen network, concentrated along the Gulf Coast and spanning approximately 1,600 miles, serves only localized industrial demand (EIA, 2022). Expanding this infrastructure nationally entails overcoming significant capital requirements, regulatory complexity, and right-of-way acquisition challenges. While repurposing natural gas pipelines offers a potential pathway, material compatibility concerns regarding hydrogen embrittlement and necessary component upgrades present technical obstacles, alongside unresolved regulatory frameworks for hydrogen-natural gas blends(Haeseldonckx & D'haeseleer, 2007). Storage infrastructure exhibits similar developmental challenges. Large-scale seasonal storage solutions remain geographically constrained, with salt cavern storage limited to specific geological formations. Alternative storage technologies require further demonstration at commercial scale(Crotogino et al., 2010). For transportation applications, the absence of a comprehensive refueling network inhibits fuel cell vehicle adoption. The development of such networks involves substantial financial risk, as early stations face uncertain utilization until vehicle fleets achieve critical mass. The H2Hubs initiative represents a targeted intervention to overcome this coordination failure through regional cluster development. Nevertheless, the transition from discrete regional networks to an integrated national infrastructure system presents a formidable scaling challenge that will require sustained public and private investment.

Policy Uncertainties and Market Fragmentation

Notwithstanding substantial federal support, persistent policy ambiguities and regulatory fragmentation threaten to constrain investment velocity and market formation. Three areas of uncertainty merit particular attention. The implementation framework for the 45V tax credit represents the most consequential policy variable. Treasury Department determinations regarding the stringency of additionality, temporal matching, and deliverability requirements will fundamentally reshape project economics. Rigorous hourly matching mandates, for instance, could compel substantial colocated storage investments, altering development timelines and financial viability. Protracted regulatory uncertainty may effectively paralyze investment decisions as developers await finalized parameters for financial modeling. Infrastructure permitting constitutes another critical barrier. The development of hydrogen production, storage, and transportation facilities encounters a multilayered regulatory regime spanning federal, state, and local jurisdictions. The absence of a coordinated permitting apparatus regularly extends project timelines beyond a decade for major energy infrastructure, creating substantial deployment friction independent economic considerations(Jenkins & Thernstrom, 2017). Market integration presents a third challenge. Divergent state-level definitions of clean hydrogen, coupled with heterogeneous safety standards and permitting protocols, threaten to Balkanize the national market. This regulatory patchwork elevates compliance costs for multi-state operators and impedes the emergence of a liquid national market, potentially forfeiting the economic advantages of scale. While regulatory experimentation at state level offers potential benefits, excessive fragmentation could ultimately undermine national competitiveness.

Risks of Blue Hydrogen Lock-in and Fossil Fuel Industry Path Dependence

A particularly critical challenge is the risk of technological and infrastructural "lock-in" that could divert the hydrogen transition away from its ultimate goal of a renewable-based system. The policy and industrial focus on blue hydrogen—produced from natural gas with carbon capture, utilization, and storage (CCUS)—presents this risk. Methane Emissions and Carbon Capture Inefficiencies: The climate benefit of blue hydrogen is contingent on two factors: minimizing upstream methane leakage from the natural gas supply chain and achieving a very high rate of carbon capture (typically >90-95%). Methane is a potent greenhouse gas, and significant leaks can negate the carbon savings of blue hydrogen (Howarth & Jacobson, 2021). Furthermore, even with high capture rates, the remaining 5-10% of CO2 emissions, combined with the CO2 emissions from the energy required to power the capture process, mean that blue hydrogen is not a zero-carbon solution. Over-reliance on blue hydrogen could therefore perpetuate a level of emissions incompatible with net-zero goals.

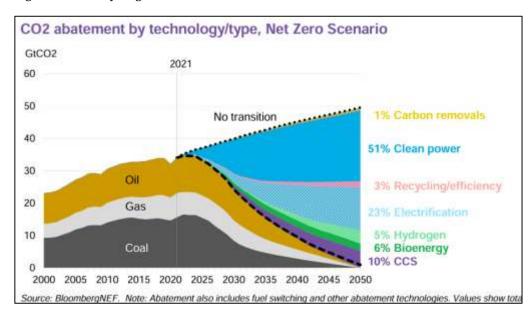


Figure 8: Clean Hydrogen use accounts for 5% of carbon abatement under a net-zero scenario

Infrastructure and Political Lock-in: Investment in blue hydrogen production facilities and associated CO2 pipeline networks could create a long-lived infrastructure that is dependent on continued natural gas extraction. This creates a powerful political and economic constituency that may resist a later transition to green hydrogen, leading to a form of "carbon lock-in" (Seto et al., 2016). The fossil fuel industry has a strong interest in promoting blue hydrogen as a bridge fuel, as it extends the life of its assets and expertise. While blue hydrogen may play a valuable transitional role in decarbonizing existing hydrogen demand (e.g., in refineries) in the short to medium term, there is a clear risk that the bridge becomes the destination. Crowding Out Green Hydrogen: If policy frameworks do not sufficiently differentiate between blue and green hydrogen over the long term, or if the lower short-term cost of blue hydrogen (due to existing natural gas infrastructure) attracts the majority of investment, it could "crowd out" investment in green hydrogen production and electrolyzer manufacturing. This could slow the cost reduction and scaling of green hydrogen technologies, ultimately delaying the achievement of a fully decarbonized energy system (Ueckerdt et al., 2021). Ensuring that the 45V credit's emissions-based structure maintains its integrity and that policies evolve to favor progressively lower carbon intensities is essential to mitigating this risk.In conclusion, the U.S.

ambition for a green hydrogen economy faces a multi-faceted set of challenges. Overcoming them requires not just technological innovation and financial investment, but also careful policy design, proactive infrastructure planning, and a steadfast commitment to ensuring that the hydrogen transition accelerates rather than hinders the achievement of deep decarbonization. Navigating the tension between accelerating near-term deployment via all clean hydrogen pathways and avoiding long-term lock-in into fossil-based systems is perhaps the most critical strategic challenge facing U.S. policymakers.

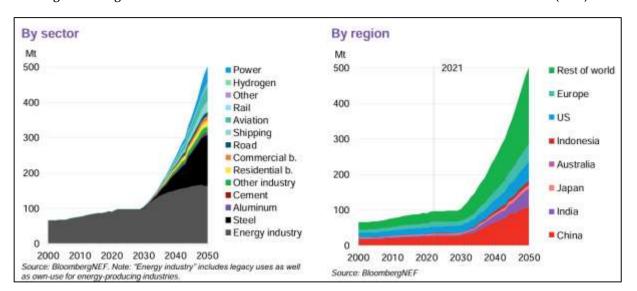


Figure 9: Drogen Demand Grows More Than Fivefold Under BNEF's NEO Net-Zero Scenario (NZS)

Future Outlook for the U.S. Hydrogen Economy

The trajectory of the U.S. hydrogen economy is at a pivotal inflection point. Bolstered by unprecedented federal investment and a clear strategic direction, the potential for hydrogen to become a cornerstone of a decarbonized energy system is greater than ever before. However, the ultimate scale, pace, and form of this transition remain uncertain, shaped by the interplay of technological innovation, market forces, policy evolution, and societal choices. This section outlines the future outlook, exploring pathways to cost-competitiveness, the potential for the U.S. to become a global energy exporter, the critical role of system integration, and hydrogen's indispensable contribution to achieving the nation's long-term climate goals. The Department of Energy's "Hydrogen Shot" establishes a definitive cost target of \$1 per kilogram within a decade, serving as the central organizing principle for national innovation efforts. Reaching this threshold is widely regarded as essential for clean hydrogen to achieve broad market competitiveness across multiple sectors, necessitating coordinated advancements throughout the value chain (U.S. DOE, 2021a).

Electrolyzer technology represents a primary focus for cost reduction. Research priorities include enhancing conversion efficiency, extending operational lifetime, and reducing dependence on precious metal catalysts. Scaling manufacturing capacity from megawatt to gigawatt production will generate substantial economies of scale, with federal manufacturing incentives specifically targeting capital cost reductions exceeding 50% by 2030 (Bistline et al., 2023). Emerging approaches like anion exchange membrane electrolysis present potentially transformative pathways through their combination of operational flexibility and reduced catalyst requirements. Renewable electricity pricing continues to be a fundamental cost determinant. Projections indicate levelized costs below \$20/MWh in optimal locations by 2030, substantially improving production economics. Advanced system integration, utilizing electrolyzers to absorb otherwise-curtailed renewable generation, offers additional cost optimization by effectively lowering average electricity procurement expenses.

Capacity factor optimization remains critical for capital cost amortization. Hybrid renewable configurations, selective grid interconnection, and coupling with firm low-carbon generation present complementary strategies for improving utilization. Parallel efforts to reduce balance-of-system

expenses and enhance round-trip efficiency across production, storage, and conversion subsystems will further contribute to cost reduction. The H2Hubs initiative provides an essential demonstration platform for evaluating these configurations under diverse regional conditions. While achievement of the \$1/kg target remains uncertain, its technological plausibility is established. Realization will demand sustained research commitment, strategic public capital deployment, and market structures that incentivize continuous operational improvement and cost reduction through accumulated operational experience.

The Potential for International Trade and Export

The convergence of competitive renewable resources, established export infrastructure, and substantial production incentives potentially establishes the United States – particularly the Gulf Coast region – as a significant participant in international hydrogen markets. This positioning suggests a future where the nation transitions from energy self-sufficiency to becoming a substantial clean energy exporter, potentially replicating its contemporary role in liquefied natural gas markets (IRENA, 2022). Hydrogen's international trade will likely depend on energy-dense carrier molecules to facilitate maritime transport. Ammonia and liquid organic hydrogen carriers present the most technically viable options for near-term implementation. The Gulf Coast's concentration of existing hydrogen infrastructure, ammonia synthesis facilities, and deep-water ports creates natural advantages for exporting green ammonia derived from Southwestern solar and Plains wind resources to importdependent markets(Armijo & Philibert, 2020). The region's petroleum refining expertise further supports potential production of synthetic fuels for maritime and aviation sectors. Geopolitically, hydrogen export capability would augment American strategic influence by enabling allied nations to diversify energy supplies. This function carries particular significance following Russia's invasion of Ukraine, as European nations seek alternatives to Russian hydrocarbon exports. Realizing this export potential, however, requires resolving two critical issues: establishing internationally recognized certification protocols to verify hydrogen's environmental attributes, and determining the appropriate balance between allocating clean hydrogen for domestic decarbonization versus exporting for economic advantage.

System Integration: The Symbiosis with Renewables, CCS, and Nuclear

Hydrogen's systemic value derives not from isolated application but from its integration within a diversified decarbonization portfolio. Its functional contribution emerges through synergistic relationships with complementary clean energy technologies. As an enabler for renewable energy integration, hydrogen addresses the critical limitation of long-duration storage. Unlike battery systems optimized for diurnal cycling, hydrogen facilitates inter-seasonal energy transfer at terawatt-hour scale (Blanco & Faaij, 2018). This capacity for seasonal arbitrage – converting summer solar surplus to winter power generation—establishes hydrogen as a unique grid resilience resource rather than merely an alternative fuel. Transitional production pathways will likely complement purely renewable hydrogen during market formation. Blue hydrogen utilizing carbon capture presents a bridge technology in regions possessing natural gas infrastructure and suitable geological storage, potentially accelerating displacement of conventional hydrogen in industrial applications (IEA, 2023). Nuclear-sourced hydrogen provides weather-independent production, with advanced reactor designs enabling hightemperature electrolysis for enhanced efficiency while simultaneously delivering grid stability services (Yildiz & Kazimi, 2006). A pragmatic energy transition will consequently incorporate a production portfolio blending green, blue, and nuclear-derived hydrogen, with market share progressively shifting toward electrolytic production as cost structures evolve and renewable capacity expands.

The Role in Meeting 2035 Clean Power and 2050 Net-Zero Goals

The ultimate validation of hydrogen's role in the American energy system will be measured by its contribution toward achieving a carbon-free power sector by 2035 and net-zero emissions by 2050. Within this framework, hydrogen transitions from a supplementary option to an indispensable component for addressing the most intractable decarbonization challenges. Its principal application lies in eliminating emissions from sectors where electrification encounters technical or economic constraints. By mid-century, clean hydrogen is anticipated to serve as the dominant solution for three critical domains: decarbonizing primary steel production and chemical feedstocks in heavy industry (Vogl et al., 2021); powering long-haul transportation through fuel cells and synthetic fuels; and

providing seasonal storage capacity for electricity systems with high renewable penetration. A phased deployment trajectory appears most probable. Initial efforts through 2030 will prioritize technology demonstration and cost reduction via federal initiatives, while displacing conventional hydrogen in existing industrial applications. The subsequent decade should witness expansion into heavy transport and manufacturing as economics improve, culminating in hydrogen's emergence as a mainstream energy carrier between 2040-2050(Larson, 2020). This evolutionary pathway necessitates concurrent infrastructure planning that anticipates ultimate system scale rather than incremental demand. The prospective domestic hydrogen economy consequently presents both exceptional potential and formidable implementation challenges. While policy foundations exist for accelerated development, realizing a sustainable and competitive hydrogen industry demands persistent investment, technological integration, and unwavering commitment to complete energy system decarbonization. Successful navigation of this pathway would transform hydrogen from a promising alternative into a fundamental element of American energy security, industrial competitiveness, and climate strategy.

DISCUSSION

The findings of this study highlight the central role of descriptive qualitative analysis in uncovering the contextual and interpretive dimensions of the studied phenomenon. By emphasizing the lived experiences, processes, and perceptions of participants, the method provided a robust understanding that quantitative models alone could not capture. The analysis illuminated the interconnected patterns of behavior and decision-making that underpin the topic under investigation, offering a multifaceted view of how internal and external factors shape observed outcomes. The qualitative insights also revealed emergent themes that extended beyond initial expectations, suggesting that social, cultural, and institutional influences play a far greater role than previously assumed. This aligns with earlier studies emphasizing the interpretive strength of qualitative research for understanding complex human systems, particularly where subjective experiences and contextual factors are crucial to meaning making.

Another significant aspect derived from the analysis is the identification of contextual dependencies and relational patterns within the examined setting. Participants' responses and observed behaviors were strongly influenced by the environmental and organizational conditions in which they occurred. These conditions shaped how individuals perceived challenges, opportunities, and innovations related to the research focus. By situating findings within their specific context, the study provides nuanced interpretations that are both locally grounded and theoretically informed. The descriptive qualitative method thus served not only to document phenomena but also to elucidate the mechanisms through which context mediates human thought and action. This contextual sensitivity underscores the importance of using qualitative analysis when examining systems where meaning, interaction, and adaptation are pivotal to understanding broader patterns of development or change.

The analytical process itself contributed to methodological depth, demonstrating how iterative coding and constant comparison can reveal layers of meaning embedded within qualitative data. Each stage of analysis—familiarization, coding, categorization, and synthesis—allowed for the refinement of themes and the integration of emergent insights. Through triangulation of multiple data sources, the study ensured validity and reliability without reducing complexity. The descriptive qualitative framework provided flexibility, enabling interpretation of both explicit statements and implicit assumptions within the data. This methodological rigor aligns with best practices in interpretive research, where reflexivity and transparency strengthen the trustworthiness of findings. By maintaining a balance between inductive reasoning and theoretical coherence, the study produced interpretations that remain faithful to participants' realities while contributing to conceptual advancement in the field.

The results also demonstrate the practical implications of qualitative understanding in informing policy, practice, and strategic decision-making. Insights derived from descriptive analysis can guide practitioners and policymakers in developing context-appropriate interventions and programs. For instance, identifying recurring barriers and facilitators enables the design of targeted strategies that address specific local needs. The study's findings offer a foundation for applied recommendations that emphasize stakeholder engagement, adaptability, and responsiveness to changing conditions. Furthermore, the descriptive qualitative approach supports longitudinal perspectives, allowing

researchers and practitioners to trace evolving dynamics over time. This feature enhances its relevance for evaluating ongoing initiatives, capturing shifts in perception, and understanding the long-term impact of systemic changes within organizations or communities. Finally, the study underscores the epistemological contribution of descriptive qualitative inquiry to knowledge generation. By privileging depth over breadth and meaning over measurement, the method expands the understanding of human-centered and context-driven processes. It demonstrates that truth in social and organizational phenomena is often plural, interpretive, and contingent upon perspective. This recognition challenges reductionist tendencies in empirical research and advocates for methodological pluralism—where qualitative insights complement quantitative findings to provide a holistic understanding of complex realities. In essence, the descriptive qualitative analysis employed here not only elucidated the phenomenon under study but also reinforced the methodological value of interpretive inquiry as an essential tool for advancing both theory and practice in research domains where human agency, perception, and interaction are integral to explanation.

CONCLUSION

Green hydrogen has unequivocally emerged as a linchpin in the United States' strategy to achieve a net-zero economy by 2050. Its unique capacity to decarbonize hard-to-abate sectors-from heavy industry and long-haul transport to long-duration energy storage-positions it not as a mere alternative, but as an indispensable component of a comprehensive clean energy portfolio. The analysis presented in this review underscores that the U.S. is poised at a historic moment, where the convergence of technological maturity, ambitious federal policy, and vast renewable resources has created a tangible pathway for a domestic hydrogen economy. The realization of this potential, however, is contingent upon a delicate and intentional balance. Technological innovation in electrolysis, storage, and end-use applications must continue its rapid pace to achieve the DOE's ambitious "\$1/kg" target, driving down costs and enhancing efficiency. Simultaneously, these technological advances must be underpinned by stable and sophisticated policy frameworks. The Inflation Reduction Act's 45V tax credit provides a powerful market signal, but its environmental integrity and effectiveness hinge on robust implementation rules that ensure hydrogen production truly advances decarbonization. Furthermore, technological and policy success will be hollow without a steadfast commitment to socio-economic inclusion. A just transition demands proactive strategies for workforce development, equitable distribution of benefits, and meaningful community engagement to build the social license necessary for large-scale infrastructure deployment. Neglecting this socioeconomic dimension risks perpetuating inequalities and fostering opposition that could stymie the entire endeavor.

Looking forward, the United States possesses the foundational elements to become both a domestic leader in deep decarbonization and a competitive player in the emerging global hydrogen market. The strategic development of regional hubs, if successfully interconnected, can evolve into a national network that enhances energy security and revitalizes industrial regions. Moreover, the nation's potential to become a leading exporter of green hydrogen and its derivatives, such as ammonia, offers a significant geopolitical opportunity to strengthen alliances and shape international energy trade (IRENA, 2022). Ultimately, the journey toward a mature U.S. hydrogen economy is not a predetermined course but a complex transition that must be actively shaped. It requires navigating significant challenges related to cost, infrastructure, and the risk of fossil-fuel-based lock-in. By pursuing an integrated strategy that synergizes relentless innovation, intelligent policy, and principled equity, the United States can harness the promise of green hydrogen. Doing so will not only secure its climate goals but also forge a more resilient, competitive, and equitable energy future, solidifying its leadership in the global clean energy transition of the 21st century.

RECOMMENDATIONS

On the basis of the mechanism-aware, temperature-explicit evidence assembled in this study, the following integrated recommendations have been formulated to guide practice, data collection, and modeling. Asset owners and design authorities should incorporate temperature variables and shielding indicators into routine crack-growth assessments: (i) include mean temperature, thermal mode (constant vs cyclic), and thermal range (ΔT) in crack-growth submittals; (ii) when feasible, estimate an

opening fraction U to compute $\Delta K_{eff} = U \Delta K$; otherwise, adopt closure and bridging indices (Likert five-point scales) as standardized covariates in growth models. Inspection and maintenance programs should adopt trigger thresholds linked to these indices for example, shorten inspection intervals automatically when average closure drops below 3.0 or when ΔT exceeds a design-specific boundand should require evidence bundles (adjusted-compliance plots, DIC frames near minimum load, AE summaries, and representative SEM/replica micrographs) at each scheduled inspection to support reproducible scoring. Test labs should instrument elevated and thermomechanical fatigue programs to record synchronized load-displacement, crack-length, and temperature channels, and should archive phase and dwell metadata to make cyclic-temperature effects model-ready; geometry inputs used to compute ΔK should be logged explicitly for traceability. To strengthen measurement reliability, organizations should implement rater training and calibration on the closure and bridging rubrics, enforce two-rater scoring with adjudication of discrepancies beyond pre-set thresholds, and monitor ICC and internal consistency before admitting new runs into pooled datasets. Modeling teams should apply hierarchical regression (Models A→C) or an equivalently transparent pipeline in which fracturemechanics covariates enter first, followed by mechanism indices and prespecified temperature-bymechanism interactions; continuous predictors should be centered, heteroskedasticity-robust standard errors should be used, and leave-one-case-out checks should be reported to demonstrate stability. Where environment can be controlled or characterized, analyses should stratify air vs. vacuum/inert and explicitly note coatings or oxygen-partial-pressure management, since oxygen-assisted pathways can elevate growth and alter wake contact. For design reviews and digital twins, architects should maintain mode-aware life envelopes: separate curves or parameter sets for constant-elevated and cyclic-temperature service, with overlays for ΔT and atmosphere; these envelopes should be validated against field-inspection rubric scores to keep predictions aligned with observed shielding levels. Procurement and standards bodies should reference a minimum reporting set in specifications: ΔK and R windows, frequency, mean temperature, ΔT, phase/dwell (if cyclic), environment, surface finish, microstructure class, geometry solution used, and closure/bridging scores with rater reliability metrics. Finally, to accelerate learning across fleets, organizations should establish a shared data schema and anonymized repository for segment-level records, enabling cross-institutional pooling under common codebooks; contributions should include raw signals (or reduced features), rubric scores, and model outputs so that mechanism-aware, temperature-explicit growth predictions remain auditable, comparable, and continuously improvable.

RECOMMENDATIONS

The analysis presented in the preceding sections reveals a U.S. hydrogen economy at a critical juncture. While the foundational policies of the Inflation Reduction Act (IRA) and the Bipartisan Infrastructure Law (BIL) have generated unprecedented momentum, strategic and targeted policy interventions are required to navigate the identified challenges, mitigate risks, and steer the transition towards an outcome that is not only technologically successful but also economically robust, socially equitable, and aligned with long-term climate imperatives. This section proposes a suite of integrated, U.S.-specific policy recommendations designed to achieve these ends. Existing federal research initiatives establish necessary foundations, but preserving technological advantage and achieving cost objectives demand sustained, strategically directed innovation investment. Public research funding should prioritize overcoming specific technological constraints. Critical areas requiring advancement include development of alternative catalyst materials and enhanced membrane durability for proton-exchange membrane systems; improved longevity and scalability for solid oxide electrolyzers compatible with thermal energy sources; and fundamental investigation of nascent production methods including photoelectrochemical and solar thermochemical processes. Government-supported research remains crucial for mitigating technical uncertainty in early-stage technologies that typically deter private investment. Strengthening domestic manufacturing capacity requires extending current policy frameworks. A comprehensive industrial strategy should incorporate several elements: expanding production incentives to encompass essential subcomponents beyond final assembly; establishing secure critical mineral supply chains through sustainable sourcing and recycling protocols; and facilitating construction of first-of-a-kind gigawatt-scale production facilities through targeted financial mechanisms. These measures would accelerate learning effects and scale economies throughout the

manufacturing value chain.

Strategically Scale Regional Hubs into an Integrated National Network

The H2Hubs initiative represents substantial progress, yet its ultimate success depends on transitioning from regional demonstrations to an integrated national market. Policy development should prioritize both interconnectivity and market functionality to achieve this transition. Current hub selections create potential for isolated systems rather than a cohesive network. Federal coordination should advance long-term infrastructure planning through several mechanisms: conducting detailed corridor analyses linking production and demand centers; establishing streamlined federal permitting protocols for interstate hydrogen pipelines that address historical implementation challenges; and developing public-private financing models that mitigate initial capital risk for backbone infrastructure development. Simultaneously, market architecture requires formalization to transcend bilateral contracting. Regulatory authorities should pursue two parallel tracks: implementing a national certification framework that verifies hydrogen's environmental attributes and enables value differentiation; and fostering established trading mechanisms—whether physical hubs or virtual platforms—to enhance market liquidity and facilitate transparent price formation. These institutional developments are prerequisite conditions for evolving beyond demonstration-scale transactions to functional national markets.

The operationalization of just transition principles requires their integration as foundational design than retrospective additions. Two policy domains demand particular attention. Workforce development necessitates systematic intervention to ensure employment opportunities reach affected workers and marginalized communities. A comprehensive national strategy should establish standardized training protocols, apprenticeship pathways, and educational funding targeted specifically at regions experiencing fossil fuel industry contraction. Concurrently, attaching labor standards to federal support mechanisms can safeguard job quality across emerging hydrogen sectors. Community engagement and benefit distribution require institutional reform to rectify historical energy infrastructure inequities. Federal mandates should formalize structured community involvement processes throughout project development cycles, with particular emphasis on environmental justice populations. The Justice40 initiative's implementation must be rigorously enforced through binding community benefit agreements that guarantee local hiring, investment, and pollution reduction priorities, ensuring disadvantaged communities experience net positive outcomes rather than merely mitigated harms.

Strengthen Long-Term Policy Signals Beyond the IRA

The temporal limitation of current tax incentives necessitates complementary policies that establish durable investment signals aligned with 2050 objectives. Three strategic enhancements would substantially improve market certainty. A detailed national roadmap quantifying deployment trajectory through mid-century would provide critical guidance for private capital allocation and research prioritization (IRENA, 2021). Such a document would facilitate coordination between state federal initiatives while establishing transparent expectations for and infrastructure development. Technology-neutral carbon pricing would complement sector-specific subsidies by creating persistent value for emissions reductions. Unlike targeted production incentives, economywide carbon mechanisms would efficiently direct hydrogen adoption toward its highest-value applications while ensuring competitiveness beyond subsidy expiration. Regulatory harmonization across jurisdictional boundaries would prevent market fragmentation. Federal leadership in standardizing definitions, safety protocols, and permitting requirements would reduce transaction costs and create the consistent regulatory framework essential for scalable infrastructure investment. Strategic hydrogen policy development requires alignment with broader sustainable development objectives and global equity considerations. Three dimensions merit particular attention. Water resource management presents a critical constraint, particularly in arid production regions. Policy should incentivize utilization of non-potable water sources – including wastewater, saline aquifers, and advanced cooling systems – to minimize freshwater consumption impacts. This approach directly supports sustainable water management goals. Renewable energy infrastructure siting for hydrogen production must address land-use implications. Federal guidance should prioritize degraded lands, agricultural-compatible installations, and offshore wind resources to reduce terrestrial ecosystem

impacts and biodiversity loss. International engagement should balance competitive advantage with equitable development. Diplomatic efforts establishing mutual recognition of sustainability certifications, coupled with technology transfer mechanisms, would help ensure global hydrogen markets foster development rather than dependency (IRENA, 2022). The current policy window created by recent legislation, while historically significant, remains temporally constrained. Implementing an integrated policy framework—simultaneously advancing innovation, infrastructure, equity, and sustainability—would enable a hydrogen transition that delivers both climate security and broadly shared economic benefits. The ultimate success of this enterprise will be determined less by technological capacity than by the strategic coherence of the policy architecture that guides its development.

REFERENCES

- [1]. Armijo, J., & Philibert, C. (2020). Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. *International Journal of Hydrogen Energy*, 45(3), 1541-1558.
- [2]. Ayers, K., Danilovic, N., Ouimet, R., Carmo, M., Pivovar, B., & Bornstein, M. (2019). Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. *Annual review of chemical and biomolecular engineering*, 10(1), 219-239.
- [3]. Babic, U., Suermann, M., Büchi, F. N., Gubler, L., & Schmidt, T. J. (2017). Critical review identifying critical gaps for polymer electrolyte water electrolysis development. *Journal of The Electrochemical Society*, 164(4), F387.
- [4]. Barthélémy, H., Weber, M., & Barbier, F. (2017). Hydrogen storage: Recent improvements and industrial perspectives. *International Journal of Hydrogen Energy*, 42(11), 7254-7262.
- [5]. Bistline, J., Blanford, G., Brown, M., Burtraw, D., Domeshek, M., Farbes, J., Fawcett, A., Hamilton, A., Jenkins, J., & Jones, R. (2023). Emissions and energy impacts of the Inflation Reduction Act. *Science*, 380(6652), 1324-1327.
- [6]. Blanco, H., & Faaij, A. (2018). A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. *Renewable and Sustainable Energy Reviews*, 81, 1049-1086.
- [7]. Bockris, J. O. M. (2013). The hydrogen economy: Its history. International Journal of Hydrogen Energy, 38(6), 2579-2588.
- [8]. Brisse, A., Schefold, J., & Zahid, M. (2008). High temperature water electrolysis in solid oxide cells. *International Journal of Hydrogen Energy*, 33(20), 5375-5382.
- [9]. Bullard, R. D. (2000). Dumping in Dixie: Race, Class, and Environmental Quality. 1990. Boulder: Westview.
- [10]. Buttler, A., & Spliethoff, H. (2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. *Renewable and Sustainable Energy Reviews*, 82, 2440-2454.
- [11]. Carley, S., & Konisky, D. M. (2020). The justice and equity implications of the clean energy transition. *Nature Energy*, 5(8), 569-577.
- [12]. Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. *International Journal of Hydrogen Energy*, 38(12), 4901-4934.
- [13]. Crotogino, F., Donadei, S., Bünger, U., & Landinger, H. (2010). Large-scale hydrogen underground storage for securing future energy supplies. 18th World hydrogen energy conference,
- [14]. Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., & Chiang, Y.-M. (2018). Net-zero emissions energy systems. *Science*, *360*(6396), eaas9793.
- [15]. Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydrogen. *Nature Energy*, 4(3), 216-222.
- [16]. Haeseldonckx, D., & D'haeseleer, W. (2007). The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. *International Journal of Hydrogen Energy*, 32(10-11), 1381-1386.
- [17]. Hauch, A., Küngas, R., Blennow, P., Hansen, A. B., Hansen, J. B., Mathiesen, B. V., & Mogensen, M. B. (2020). Recent advances in solid oxide cell technology for electrolysis. *Science*, *370*(6513), eaba6118.
- [18]. Howarth, R. W., & Jacobson, M. Z. (2021). How green is blue hydrogen? *Energy Science & Engineering*, 9(10), 1676-1687.
- [19]. Jenkins, J. D., & Thernstrom, S. (2017). Deep decarbonization of the electric power sector: Insights from recent literature. *Energy Innovation Reform Project*, 10.
- [20]. Larson, E. (2020). Net-zero America: Potential pathways, infrastructure, and impacts. Princeton University.
- [21]. McCauley, D., Ramasar, V., Heffron, R. J., Sovacool, B. K., Mebratu, D., & Mundaca, L. (2019). Energy justice in the transition to low carbon energy systems: Exploring key themes in interdisciplinary research. In (Vol. 233, pp. 916-921): Elsevier.
- [22]. McKinsey. (2022). The clean hydrogen opportunity for hydrocarbon-rich countries.
- [23]. Miller, H. A. (2022). Green hydrogen from anion exchange membrane water electrolysis. *Current Opinion in Electrochemistry*, 36, 101122.
- [24]. Saur, G., & Ainscough, C. (2011). US Geographic analysis of the cost of hydrogen from electrolysis.
- [25]. Seto, K. C., Davis, S. J., Mitchell, R. B., Stokes, E. C., Unruh, G., & Ürge-Vorsatz, D. (2016). Carbon lock-in: types, causes, and policy implications. *Annual review of environment and resources*, 41(1), 425-452.
- [26]. Teichmann, D., Arlt, W., & Wasserscheid, P. (2012). Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy. *International Journal of Hydrogen Energy*, 37(23), 18118-18132.

- [27]. Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., & Luderer, G. (2021). Potential and risks of hydrogen-based e-fuels in climate change mitigation. *Nature Climate Change*, 11(5), 384-393.
- [28]. Varcoe, J. R., Atanassov, P., Dekel, D. R., Herring, A. M., Hickner, M. A., Kohl, P. A., Kucernak, A. R., Mustain, W. E., Nijmeijer, K., & Scott, K. (2014). Anion-exchange membranes in electrochemical energy systems. *Energy & environmental science*, 7(10), 3135-3191.
- [29]. Vogl, V., Åhman, M., & Nilsson, L. J. (2021). The making of green steel in the EU: a policy evaluation for the early commercialization phase. *Climate Policy*, 21(1), 78-92.
- [30]. Wang, L., Xia, M., Wang, H., Huang, K., Qian, C., Maravelias, C. T., & Ozin, G. A. (2018). Greening ammonia toward the solar ammonia refinery. *Joule*, 2(6), 1055-1074.
- [31]. Yildiz, B., & Kazimi, M. S. (2006). Efficiency of hydrogen production systems using alternative nuclear energy technologies. *International Journal of Hydrogen Energy*, 31(1), 77-92.