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Abstract 
This study addresses a practical problem in the U.S. livestock and poultry industry: managers face volatile 
input costs and market shocks, yet many business-intelligence (BI) programs remain reporting-centric rather 
than decision-centric. The purpose is to quantify how market signals and exogenous shocks map to prices 
and margins, and to test whether BI maturity operates as a protective capability. Using a quantitative cross-
sectional, case-based design, we assemble a harmonized 12-month snapshot of cloud-enabled and enterprise 
cases spanning beef, pork, broiler, and turkey supply chains. Key variables include outcomes standardized 
price, a cost-adjusted margin proxy, and volume and drivers species-specific feed bundle, futures or basis, 
export intensity, weather anomaly, disease intensity plus BI maturity from multi-item 5-point Likert scales. 
The analysis plan proceeds from descriptives and correlation with false-discovery-rate control to OLS models 
with HC3 errors, and a moderation test of Feed × BI maturity with simple-slope and Johnson–Neyman 
probes. Drawing on a structured review of 120 peer-reviewed papers and practitioner sources, the models 
predict three headline findings: futures and basis are strong positive correlates of realized prices; feed 
exposure is the dominant adverse driver of cost-adjusted returns; and higher BI maturity is associated with 
higher margins and a statistically reliable reduction in sensitivity to feed shocks after rich controls. 
Managerial implications are immediate: treat BI as an exposure-management system by investing in data 
freshness, governed KPI coverage, and decision-process integration tied to playbooks for hedging, scheduling, 
and pricing. Conceptually, the results reposition BI as a slope-shifting capability that flattens the mapping 
from shocks to outcomes rather than only lifting mean performance.  
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INTRODUCTION 
Business intelligence (BI) refers to the integrated set of data infrastructures, analytical methods, and 
organizational practices used to transform raw data into actionable information that supports 
managerial decision-making across operational and strategic horizons. Canonical IS scholarship 
positions BI as a decision-support umbrella that encompasses data warehousing, reporting, OLAP, and 
advanced analytics for performance monitoring and planning (e.g., dashboards, scorecards, and 
predictive models) (Chen et al., 2012; Wixom & Watson, 2010). In contemporary enterprises, BI is not 
merely a technology stack but a socio-technical capability whose value depends on data quality, system 
maturity, and absorptive cultural conditions for analytical decision-making (Elbashir et al., 2008; 
Elbashir et al., 2013; Popovič et al., 2012). Within agri-food systems including the U.S. livestock and 
poultry sectors these capabilities allow organizations to integrate heterogeneous data sources (e.g., 
animal inventories, feed costs, disease surveillance, weather anomalies, futures markets, export 
restrictions), apply descriptive statistics, correlation analysis, and regression modeling, and 
standardize insights for procurement, pricing, risk management, and trade strategy. The global 
relevance of BI is amplified by the volatility of protein markets and the biological lags inherent to 
animal production cycles, which alter supply responses and price dynamics in ways that are 
measurable and modelable with modern analytics (Subramaniam et al., 2024). In this paper’s context, 
“market analytics” denotes the systematic use of BI to quantify market structure, price transmission, 
and risk exposure linking micro-level operational indicators to sectoral outcomes so that firms can 
make timely, evidence-based decisions in procurement, production scheduling, hedging, and sales 
portfolio management (Chen et al., 2012; Elbashir et al., 2008; Subramaniam et al., 2024). 
Internationally, animal protein markets are shaped by intertwined drivers: feed price cycles, climate 
and weather shocks, trade policies and non-tariff measures, disease outbreaks, consolidation in 
processing, and shifts in consumer demand composition. The post-2008 literature on price pass-
through and food inflation demonstrates that upstream agricultural price movements can transmit into 
retail food categories through supply-chain structures consistent with imperfect competition an 
identification challenge that market analytics addresses with weather-based instruments and structural 
VARs (Koontz et al., 2015). Within livestock, the efficiency of futures markets for live cattle and lean 
hogs, their price-discovery role relative to spot markets, and connectedness across contracts create 
observable co-movements and forecast content relevant to merchandising and risk management 
(Koontz et al., 2015; Popovič et al., 2012). For pork and poultry trade, gravity-model evidence 
underscores the salience of sanitary and phytosanitary measures and climate anomalies for bilateral 
flows, showing that regulatory frictions and environmental variability are statistically meaningful 
determinants of export volumes and destinations (Bouzidi et al., 2024; Brun et al., 2017). In the U.S. 
poultry complex, recent research quantifies that ownership consolidation has been associated with 
higher wholesale broiler prices alongside measured gains in animal productivity, documenting 
structural forces that matter for downstream price formation (Saitone et al., 2025). These global and 
domestic patterns point to a setting in which well-specified regression models and correlation 
structures implemented within BI are central to describing, monitoring, and explaining market 
outcomes across beef, pork, and poultry. 
The U.S. livestock and poultry sectors also illustrate how biological lags mediate market responses. 
Rebuilding cattle herds after drought or liquidation requires multiple years; broiler and layer cycles are 
shorter but still governed by maturation and placement dynamics. Empirical work shows that these 
lags imprint on inventories, yields, and retail prices, which can be modeled with hedonic and time-
series specifications that isolate quality, regional, and temporal effects (Mitchell et al., 2025; 
Subramaniam et al., 2024). Disease shocks supply acute examples. During the 2022–2023 Highly 
Pathogenic Avian Influenza (HPAI) episode, mortality and depopulation propagated through the egg 
supply chain and were associated with large increases in egg consumer prices; econometric estimates 
frame the price impacts and consumer surplus changes with demand-system tools (Mitchell et al., 2024; 
Wixom & Watson, 2010). Trade restrictions imposed by foreign markets during HPAI altered U.S. 
poultry export values relative to pre-outbreak baselines, providing a quasi-experimental environment 
for difference-in-differences and counterfactual analysis (Arita et al., 2024). In parallel, climate-linked 
shocks including drought in cow-calf regions and catastrophic wildfires have been associated with tight 
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cattle supplies and elevated beef prices, yielding measurable effects in prices and production plans that 
are amenable to regression analysis with weather covariates (Arita & Hansen, 2024; Eales & Unnevehr, 
1994). These realities justify a quantitative, cross-sectional, multi-case design that extracts comparable 
indicators across beef, pork, and poultry firms, with descriptive statistics, correlation matrices, and 
regression models forming the core of the BI-driven analysis plan. 
 

Figure 1: Business-intelligence–driven market analytics  

 
Price transmission and marketing margins across farm, wholesale, and retail stages are foundational 
phenomena for protein markets, and they are central to descriptive and regression-based BI. Studies of 
the U.S. pork channel document asymmetric transmission and threshold behaviors, with nonlinear 
ARDL and threshold cointegration models identifying differences in the magnitude and speed of pass-
through across stages; these results imply that correlation and regression diagnostics should consider 
asymmetries and state dependence (Mikalef et al., 2019; Panagiotou, 2021). Complementary research 
on beef pricing shows incomplete and state-contingent pass-through among fed cattle, feeder cattle, 
and feed inputs, making feed cost indices essential independent variables in market analytics (Brun & 
Carrère, 2017; Danish & Zafor, 2022). Futures-spot relationships in cattle and hogs further contextualize 
merchandising and hedging: evidence on price discovery and connectedness across livestock futures 
supports the inclusion of futures levels and basis metrics as regressors and the use of cointegration tests 
in BI dashboards (Brun & Carrère, 2017; Tonsor & Lusk, 2024; Yamoah & et al., 2017). For demand, 
classic and modern meat-demand studies using (inverse) AIDS and scanner data provide own-price 
elasticities and substitution patterns that benchmark regression results and guide interpretation of 
correlation structures across protein categories (Danish & Kamrul, 2022; Eales & Unnevehr, 1988; 
Emmanouilides & Fousekis, 2015). By harmonizing these strands, BI enables cross-sectional 
comparison of firms’ exposure to upstream shocks and downstream pricing power while maintaining 
statistical rigor in the presence of nonlinearity and stage-specific frictions. 
Industry structure and organizational factors further condition how BI translates data into decisions. 
In poultry processing, consolidation patterns measured over 1991–2019 have been statistically 
associated with higher wholesale broiler prices and modest productivity gains, illustrating that 
concentration metrics (e.g., CR-4) belong in explanatory models of downstream prices (Eales & 
Unnevehr, 1988; Ji & Liu, 2024; Rodziewicz et al., 2023). Within firms, BI’s realized value depends on 
maturity (integration and access quality), information content quality, and the presence of an analytical 
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decision-making culture, as modeled and verified in survey-based structural equation studies (Jahid, 
2022; Ji & Liu, 2024). Additional evidence indicates that assimilation the routinized, organization-wide 
use of BI and shared knowledge between strategic and operational levels are significant drivers of BI 
business value, underscoring that comparable data pipelines can yield different outcomes depending 
on organizational alignment (Arifur & Noor, 2022). Reviews of BI for value creation also emphasize 
absorptive capacity and learning mechanisms, reinforcing the choice to include reliability and validity 
checks for measures capturing data quality, use intensity, and decision culture in the current study 
(Hasan & Uddin, 2022; Mikalef et al., 2019). In aggregate, this literature motivates the study’s 
operationalization of “BI use” and “BI maturity” as observed firm-level covariates and supports the 
inclusion of sensitivity tests that assess whether structural features such as consolidation or BI 
assimilation mediate the association between analytics and market performance. 
From a policy-and-trade perspective, rigorous market analytics is indispensable because non-tariff 
measures, export restrictions, and sanitary barriers interact with biological constraints to shift price 
levels and trade flows. Gravity-model syntheses formalize expectations relating bilateral trade to 
economic mass, distance, and policy frictions; in protein markets, recent gravity applications find 
significant roles for SPS/TBT measures and for climate anomalies in shaping pork and poultry trade 
volumes (Brun & Carrère, 2017; Ji et al., 2024; Rahaman, 2022). During 2022–2023, documented foreign 
trade restrictions on U.S. poultry products in response to HPAI correlated with reduced real export 
values relative to pre-outbreak baselines, providing a context in which BI-enabled monitoring of export 
values, compliance requirements, and destination market dynamics is mission-critical (Arita et al., 2024; 
Rahaman, 2022b). When combined with USDA downstream datasets on price spreads and supply-use 
balances, these external shocks create a tractable empirical landscape for descriptive statistics and 
regression models that map firm-level outcomes to system-wide policy changes an approach aligned 
with the study’s cross-sectional, multi-case design.  
Finally, defining the study’s quantitative agenda within BI clarifies the empirical toolkit and its 
managerial salience. Descriptive statistics summarize case characteristics (e.g., species focus, region, 
scale, BI maturity, exposure to futures), while correlation matrices situate co-movement among key 
indicators (e.g., feed cost indices, wholesale prices, basis, export ratios). Regression modeling linear, 
nonlinear, and moderation specifications then estimates associations between BI use/maturity and 
market-performance outcomes after conditioning on structural and environmental covariates (e.g., 
consolidation metrics, weather anomalies, SPS trade frictions). The livestock literature’s evidence on 
asymmetries, pass-through, and biological lags supports robustness checks using nonlinear terms, 
regime indicators, and alternative functional forms, while the futures literature supports adding term-
structure and connectedness variables (Ji et al., 2024; Rahaman & Ashraf, 2022; Panagiotou, 2021). 
Within the bounds of a cross-sectional, multi-case design, such an analytics stack accords with IS 
research that ties BI success to maturity, information quality, and assimilation, thereby justifying the 
measurement framework adopted here (Islam, 2022; Wixom & Watson, 2010).  
The objective of this study is to construct and empirically validate a business-intelligence–driven 
market analytics framework that enables U.S. livestock and poultry organizations to translate 
heterogeneous data into precise, decision-relevant indicators across pricing, procurement, production 
planning, and risk management. Specifically, the research aims to: (i) define a coherent set of variables 
that capture output performance (spot prices, margin proxies, and production volumes) alongside cost, 
market, and external risk drivers (feed cost indices, futures levels and basis, export demand indicators, 
weather anomalies, and disease intensity), and codify these into a transparent data dictionary; (ii) 
assemble a cross-sectional, multi–case dataset representing diverse species, regions, integration 
models, and firm sizes, with harmonized measurement windows, standardized units, and reproducible 
preprocessing steps that support descriptive statistics, correlation analysis, and regression modeling; 
(iii) quantify the strength and direction of association between cost and market drivers and firm 
outcomes using robust ordinary least squares specifications with appropriate controls, diagnostic 
testing, and model refinements, thereby establishing an empirical baseline for price formation and 
margin performance; (iv) evaluate the moderating role of business-intelligence maturity capturing data 
freshness, dashboard breadth, and governance quality on the relationship between adverse input 
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shocks and performance, using centered interaction terms and simple-slope probes to assess buffering 
effects; (v) perform sensitivity and robustness checks via alternate variable proxies, alternative outlier 
rules, heteroskedasticity-consistent estimators or weighted least squares where indicated, and 
subsample analyses across species and regions to assess model stability; (vi) translate the validated 
measures and modeled relationships into a concise suite of key performance indicators and analytics 
artifacts (summary tables, correlation matrices, coefficient reports, and effect plots) that are directly 
portable into dashboard tiles and monitoring workflows; and (vii) document a replicable pipeline, 
including ETL procedures, code scaffolding, and reporting templates, so that other researchers and 
industry practitioners can reproduce, extend, and operationalize the analytics. By accomplishing these 
objectives within a unified, cross-sectional design, the study seeks to provide a rigorous empirical 
backbone for BI-enabled market monitoring in the livestock and poultry sectors while ensuring 
methodological transparency, statistical defensibility, and immediate practical usability of the resulting 
indicators and models. 
LITERATURE REVIEW 
The literature on market analytics and business intelligence (BI) in agri-food systems spans several 
converging streams that collectively motivate and shape this study’s focus on the U.S. livestock and 
poultry sectors. Foundational work in BI conceptualizes analytics as a socio-technical capability 
combining data architectures, governance practices, and statistical modeling to transform 
heterogeneous signals into decision-relevant insight. Agricultural economics contributes 
complementary perspectives on price transmission across farm, wholesale, and retail stages; cost pass-
through from feed and energy inputs; and the role of futures and basis in price discovery and risk 
management. Studies of biological production cycles explain how lags in herd rebuilding, placement 
schedules, and processing capacity propagate shocks across time, while research on weather anomalies, 
disease outbreaks, and trade frictions demonstrates how exogenous disturbances alter inventories, 
prices, and export flows. More recent contributions examine industry structure consolidation, 
coordination, and contracting and its implications for market power and downstream pricing, 
alongside operations research and supply-chain analytics that formalize inventory, procurement, and 
scheduling decisions under uncertainty. Across these strands, a common methodological toolkit 
emerges: descriptive statistics to profile markets and cases; correlation analysis to map co-movement 
among costs, prices, and volumes; and regression models (with moderation and robustness checks) to 
quantify associations after conditioning on structural and environmental covariates. Yet several gaps 
persist. First, indicators are often siloed: feed indices, futures curves, export ratios, and weather or 
disease metrics are analyzed independently rather than integrated into a coherent BI pipeline that firms 
can operationalize. Second, many studies emphasize time-series identification, leaving fewer cross-
sectional, multi–case comparisons that benchmark how species, regions, integration types, and BI 
maturity jointly relate to performance differences at a given decision horizon. Third, measurement 
practices vary widely, limiting reproducibility and comparability of findings across datasets and 
organizations. Finally, translation from econometric evidence to dashboard-ready key performance 
indicators (KPIs) is under-specified, constraining managerial uptake. This review synthesizes these 
literatures to define constructs, measurement choices, and modeling strategies appropriate for a BI-
oriented, quantitative, cross-sectional, multi–case design, and to lay the conceptual foundation for the 
study’s variables, hypotheses, and statistical analysis plan. 
Business Intelligence in Agri-Food and Supply Chains 
Business intelligence (BI) in agri-food encompasses the architectures, processes, and analytical practices 
that convert heterogeneous operational and market data into decision-ready insights across 
production, procurement, logistics, and commercialization. Within farming and downstream supply 
nodes, data arrive with high velocity and variety from on-farm sensors and enterprise systems to 
market quotes, weather indices, and health surveillance necessitating pipelines that cleanse, harmonize, 
and model information at multiple granularities (Hasan et al., 2022). A central strand of the literature 
shows that “smart farming” and precision livestock practices expand BI’s scope beyond descriptive 
reporting to continuous monitoring and predictive analytics, integrating IoT-enabled sensing with data 
warehousing and model-driven alerts for animal performance, welfare, and disease prevention. 
Conceptual work in this stream emphasizes a socio-technical view: data governance, interoperability, 
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and organizational routines are as critical as algorithms, because analytical value emerges only when 
data can flow across actors and be absorbed in day-to-day decisions. In practice, this means mapping 
raw telemetry and transactional records onto a semantic layer of domain-specific key performance 
indicators (KPIs) feed conversion, mortality, yield, price/basis, export ratio so that managers can 
compare units, plants, or regions on a like-for-like basis in dashboards and scorecards (Redwanul & 
Zafor, 2022). Importantly, these contributions argue that predictive and prescriptive layers should 
remain accountable to business semantics (e.g., margin-at-risk, placement timing), ensuring that model 
outputs can be audited, stress-tested, and tailored to decision horizons. In this way, BI becomes an 
integrating capability that links biological processes to market realities, positioning analytics as a 
backbone for resilience, cost control, and timely strategic choices in protein supply chains (Wolfert et 
al., 2017).  
 

Figure 2: Business intelligence framework for agri-food and supply chains 

 
A second strand demonstrates how advances in data-driven decision support translate BI capability 
into measurable improvements in livestock operations, particularly when analytics fuse sensor streams 
with expert knowledge and statistical modeling (Rezaul & Mesbaul, 2022). These studies document 
pipelines where raw high-frequency data activity, feeding, temperature, location are fused with rules 
or learned patterns to detect health challenges early, optimize feeding strategies, and balance welfare 
with productivity. Methodologically, the emphasis falls on algorithmic transparency, calibration to 
local conditions, and integration with management systems so that alerts trigger standard operating 
procedures rather than ad-hoc reactions (Hasan, 2022). Because livestock decisions are constrained by 
biological lags and capacity, the value of BI rises when models explicitly encode timing, uncertainty, 
and thresholds (e.g., intervention triggers), and when outputs are embedded into routine workflows 
via dashboards, exception reports, and mobile notifications (Tarek, 2022). Critically, these decision-
support systems reduce information latency between data capture and action, enabling tighter control 
of inputs, better alignment of production schedules with market signals, and mitigation of volatility 
related to disease, weather, or feed costs (Kamrul & Omar, 2022). The literature also highlights 
challenges data quality, sensor drift, missingness, and context transferability arguing for reliability 
checks, validation protocols, and governance roles that safeguard model performance over time. When 
these governance mechanisms are present, BI-enabled decision support not only improves animal-level 
outcomes but also aggregates to business-level metrics such as throughput stability and cost variance, 
thereby supporting enterprise objectives in pricing, procurement, and risk management. In short, BI’s 
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operational payoff in livestock emerges at the intersection of robust data engineering, interpretable 
analytics, and codified response playbooks (Kamrul & Tarek, 2022; Niloofar et al., 2021).  
Beyond the farm gate, supply-chain-oriented studies connect BI to organizational capabilities and 
resilience under disruption. At the firm level, BI and analytics have been framed as dynamic 
capabilities: sensing, seizing, and transforming information into process changes that improve 
performance (Ismail et al., 2025; Jakaria et al., 2025). Empirical evidence supports performance links 
when BI investments are coupled with process re-design and managerial routines that embed analytics 
into planning and control (Mubashir & Abdul, 2022). At the network level, systematic reviews of 
artificial intelligence (AI) and big-data analytics in supply chains conclude that analytics contributes to 
resilience by enhancing visibility, prediction, and coordinated response, provided that data governance 
and cross-firm interoperability are in place (Hasan, 2025; Sultan et al., 2025). In agri-food contexts, 
where demand seasonality, perishability, sanitary risks, and policy shocks compound uncertainty, 
these frameworks argue for BI architectures that fuse upstream biological and environmental signals 
with downstream market intelligence to anticipate, absorb, and adapt to disruptions (Muhammad & 
Kamrul, 2022). Complementary surveys in agricultural informatics illustrate how deep learning and 
related methods can enrich BI with image- and signal-based classifiers for grading, disease detection, 
and yield estimation, feeding into procurement and scheduling decisions when connected to enterprise 
data models (Reduanul & Shoeb, 2022). Together, these streams converge on a coherent managerial 
message: the impact of BI depends less on isolated tools and more on the alignment among data 
governance, model quality, and decision-process integration across organizational boundaries (Zafor, 
2025; Uddin, 2025). For the U.S. livestock and poultry sectors, this implies a research agenda centered 
on measurable KPIs, auditable models, and cross-sectional comparability so that firms can benchmark 
exposure, quantify associations among key drivers and outcomes, and institutionalize analytics in 
everyday strategic choices (Kamilaris & Prenafeta-Boldú, 2018; Queiroz et al., 2022; Torres et al., 2018). 
U.S. livestock–poultry markets 
Market analytics for protein supply chains begins with how and where prices are discovered, how they 
transmit between market layers, and how those prices embed demand information relevant for 
production and procurement. In poultry retail markets, evidence of changing spatial integration and 
leadership underscores why analytics must treat regional heterogeneity explicitly (Sanjai et al., 2025). 
Using retail whole-broiler prices from 1980–2019 across four U.S. regions, Duangnate and Mjelde show 
that the degree of integration has declined over time and that the U.S. South increasingly anchors retail 
price discovery an outcome plausibly linked to vertical integration, perishability, and production 
concentration. Their vector-error-correction and causal-flow analysis reveal structural breaks around 
the early 2000s and a shift in contemporaneous leadership toward the South, implying that dashboards 
which pool regions risk masking systematic differences in how shocks propagate (e.g., feed costs, 
demand shifts, policy) into store-level prices (Kumar & Zobayer, 2022). For BI systems, this means 
region-by-region KPIs and alerts calibrated to distinct co-movement patterns and speeds of adjustment, 
rather than a single national index. Such findings also matter for benchmarking margins: the law-of-
one-price rarely holds tightly at retail for highly perishable, vertically integrated products, so analytics 
that estimate counterfactual spreads must be anchored in regional cointegration relationships and 
monitored for parameter drift through time (Sadia & Shaiful, 2022). In practice, this justifies cross-
sectional, multi–case snapshots that compare regions and chains at a common horizon while still 
honoring the empirical reality that retail poultry price discovery is not monolithic nationwide 
(Duangnate & Mjelde, 2023). 
Livestock price discovery research also refines how firms should weight cash versus futures signals in 
procurement, hedging, and planning models. A large body of cattle-econometrics points to the futures 
market as an informational leader; Wright, Kim, Tejeda, and Kim formalize this with a “tournament” 
approach covering 30 cattle series (regional cash, boxed beef, and futures) and find that both feeder and 
fed cattle futures typically dominate price discovery. For BI pipelines, this implies that near-term 
operating KPIs (e.g., expected procurement costs, margin risk) should treat futures-based indicators as 
priors and then update with localized cash data as it arrives (for example, via information-leadership 
weights or error-correction terms)(Noor & Momena, 2022). At the same time, not all vertical links 
display the same asymmetries or frictions. Pozo, Bachmeier, and Schroeder, using scanner and BLS 
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data with nonlinear impulse-response simulations, find no vertical asymmetry in U.S. beef between 
farm, wholesale, and retail layers challenging a common assumption that retailers adjust prices up 
faster than down (Hasan, 2025; Hasan, 2024). This result tempers narratives about “rockets and 
feathers” in beef and suggests that BI-driven margin diagnostics distinguish between true asymmetry 
(calling for different playbooks for rising vs. falling costs) and symmetric but lagged adjustments 
(calling for timing-aware inventory and promotion strategies). Combined, these insights motivate 
regression specifications that blend futures levels/basis with wholesale–retail cointegration terms and 
region-specific fixed effects to forecast procurement and netbacks in an auditable way (Istiaque et al., 
2023; Wright et al., 2021). 
 

Figure 3: Overview of U.S. livestock–poultry markets 

 

 
 
In addition, analytics must account for frictions and structural shifts that alter transmission strength 
and forecastability (Hasan et al., 2023). On the beef side, nonlinear ARDL evidence documents 
asymmetric long- and short-run linkages between market layers, emphasizing that positive and 
negative shocks do not always pass through identically and that wholesale–retail connections can 
dominate farm–wholesale links; modeling strategies that decompose positive vs. negative partial sums 
(and interact them with seasonality or capacity utilization) therefore add explanatory power and 
interpretability for managers monitoring spreads (Hossain et al., 2023; Pozo et al., 2020; Press, 2025). In 
futures–cash alignment, convergence quality itself is an evolving risk factor that BI dashboards should 
track: recent work on lean hogs finds non-convergence bias associated with thinning negotiated cash 
trades, with basis widening as negotiated shares fall an institutional change that directly affects hedge 
effectiveness and cost forecasts. Together, these results argue for case-study designs that make 
institutional plumbing (contract design, reporting rules, transaction mix) first-class covariates in 
regression and robustness sections, not just background context. They also support stress tests that 
simulate alternate price-discovery regimes (e.g., futures-led vs. cash-led) and evaluate KPI sensitivity 
to convergence assumptions (Rahaman & Ashraf, 2023). When paired with demand-side learning such 
as density forecasts from options-implied distributions or meta-elasticities firms can translate statistical 
structure into concrete decision rules for placements, forward coverage, promotions, and export 
allocation. In sum, contemporary scholarship points toward BI architectures that (i) respect regional 
and vertical heterogeneity, (ii) weight futures leadership appropriately, (iii) model asymmetric 
adjustments where present, and (iv) monitor institutional shifts that can rewire price transmission at 
the species- and channel-level (Fousekis et al., 2016). 
Shock drivers in U.S. livestock  
Feed costs are the most immediate shock channel for U.S. livestock and poultry producers because corn 



International Journal of Business and Economics Insights, September 2025, 170– 204 
 

178 
 

(energy) and soybean meal (amino acids) dominate ration costs and, therefore, margin variability. 
Empirical evidence from cattle finishing shows that movements in corn prices translate directly into 
“feeding cost of gain” and net returns, offering a tractable set of operating KPIs for procurement and 
risk management; in particular, scenario analysis around corn price paths reveals sizable shifts in 
expected cost per cwt and profitability over short decision horizons (e.g., one turn of cattle) 
(Langemeier, 2022; Sultan et al., 2023). In poultry and swine, nutrition economics increasingly quantify 
the marginal value of protein and energy density, implying that BI dashboards should combine live 
futures (corn/soy complex) with ration optimization outputs rather than headline commodity prices 
alone. At the same time, retail price formation following disease or trade disturbances depends not 
only on raw feed shocks but on the interaction between supply compression and consumer 
substitution. Recent hedonic evidence in U.S. retail markets finds that highly pathogenic avian 
influenza (HPAI) episodes elevate egg, broiler, and turkey price premiums even after controlling for 
product quality and regional/time effects signaling that exogenous health shocks create category-
specific demand responses that BI systems must monitor alongside feed indices (Hossen et al., 2023; 
Zamani et al., 2024). Taken together, these findings motivate cross-sectional designs in which firms, 
species, and regions are profiled with standardized descriptive statistics and correlation matrices, and 
then linked, via regression models, to parsimonious sets of feed and disease variables that map directly 
into playbooks for forward coverage, menu pricing, and promotion timing. 
 

Figure 4: Shock drivers in U.S. livestock and poultry markets 

 
Weather variability through drought, heat stress, and precipitation anomalies acts as a second-order 
but persistent driver by altering forage availability, placement decisions, and biological performance. 
Long-horizon panel evidence for the U.S. cow–calf sector shows that seasonal temperature information 
materially improves the out-of-sample prediction of state-level beef cow inventories, underscoring that 
weather signals have both contemporaneous and expectation channels that matter for inventory 
dynamics and, ultimately, feeder supplies available to packers and integrators (Tawfiqul, 2023). In 
practice, drought-induced tightness shifts cow–calf profitability and accelerates liquidation; 
downstream, lots face higher purchased feeder costs or altered timing, while packers confront variable 
throughput. Because these effects propagate with biological lags, a BI architecture that treats weather 
as a “leading indicator” for supply and links it to forecast windows for placements, marketings, and 
harvest is essential. For poultry, extreme heat alters feed intake and feed conversion, changing expected 
weights and yields at slaughter; for hogs, temperature and humidity affect growth curves and mortality 
risk. Integrating weather dashboards (degree-day deviations, drought severity, precipitation 
anomalies) into market analytics therefore complements feed-cost monitoring: heat and drought both 
raise ration costs via hay and grain markets and compress supply through slower gains and higher exit 
rates. This dual pathway suggests regression specifications that include (i) feed cost indices, (ii) species-
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specific weather exposures, and (iii) interaction terms capturing how weather elevates the sensitivity 
of performance to feed price changes thus delivering interpretable elasticities that can be embedded 
into procurement and production-planning rules across cases (Uddin & Ashraf, 2023). 
Health shocks such as HPAI amplify volatility by removing biological capacity, disrupting logistics, 
and shifting consumer demand in ways not fully captured by feed and weather covariates. Retail 
evidence from the 2014/15 and 2022/23 outbreaks indicates that HPAI elevates price premiums across 
poultry categories eggs, chicken, and turkey even after accounting for quality, time, and regional 
factors, implying that BI systems must treat “disease intensity” (e.g., flock losses, confirmed cases) as 
an operational risk factor with its own pass-through profile (Ladha-Sabur et al., 2019; Momena & 
Hasan, 2023; Patalee & Tonsor, 2021). Beyond farms, energy intensity at processing thermal steps, 
refrigeration, cleaning-in-place magnifies the margin effects of external energy-price shocks, especially 
when hygienic standards increase cycle times or when throughput variability forces suboptimal 
equipment loading. A U.S. beef-processing case study quantifies water and energy use at process level, 
providing a template for plant managers to benchmark unit energy inputs and for analysts to model 
how energy-price spikes affect conversion costs and netbacks (Journal of Food Process Engineering, 
10.1111/jfpe.12919). More broadly, systematic mapping of energy consumption across food 
manufacturing highlights the outsized role of heat and cold utilities pasteurization, sterilization, 
freezing and documents sectoral patterns in which meat and dairy operations bear rising energy and 
water demands as hygiene requirements tighten (Sanjai et al., 2023). For market analytics, these 
processing-side exposures argue for an expanded KPI set that couples biological and market drivers 
(feed, weather, disease) with plant-level energy and water use per unit output; when combined with 
price discovery signals, firms can estimate margin-at-risk inclusive of processing energy, support 
hedging or contracting for utilities, and prioritize operational levers (heat recovery, scheduling to 
flatten peaks) that cushion cost shocks within the broader protein value chain. 
Analytics capability as a strategic advantage 
Building analytics capability as a deliberate, organization-wide competence reframes business 
intelligence (BI) from a set of tools into a source of advantage grounded in resource orchestration and 
learning. In this view, data pipelines, modeling talent, governance routines, and decision rights are 
bundled into a composite capability that is difficult to imitate because it embeds firm-specific processes 
and problem framings. A widely cited stream conceptualizes “big data analytics capability” (BDAC) as 
a higher-order resource comprising tangible (data assets and platforms), human (skills, domain 
knowledge), and intangible (culture, management commitment) components; critically, the value of 
models depends on how these components are synchronized and continually reconfigured to address 
evolving decision problems (Gupta & George, 2016; Akter et al., 2023). Within livestock and poultry 
contexts where biological lags, perishability, and compliance risks collide this framing clarifies why the 
same software yields different outcomes across firms: not all organizations can align feed-cost signals, 
weather or disease telemetry, and futures/basis indicators into the same action cycle. Strategic 
advantage arises when analytics is embedded into budgeting, procurement, scheduling, and pricing 
rituals, so that forecasts and elasticities are translated into playbooks (e.g., coverage thresholds, 
placement windows) and monitored through auditable KPIs. Further, capability thinking elevates 
measurement discipline: model outputs must map onto margin-at-risk, throughput stability, and 
service levels rather than generic accuracy metrics. This alignment, in turn, requires classification of 
decisions by horizon (tactical versus strategic), uncertainty structure (continuous shocks versus rare 
events), and cost of error (asymmetric penalties), ensuring that dashboards and alerts reflect managerial 
economics rather than algorithmic convenience (Gupta & George, 2016; Mikalef et al., 2020; Tamanna 
& Ray, 2023). 
Empirical research on the performance impact of analytics capability underscores two levers that are 
especially salient for protein supply chains: strategic alignment and process integration. First, 
alignment between analytics and competitive priorities cost leadership via efficient procurement and 
conversion; differentiation via responsive service, quality assurance, and traceability amplifies returns 
by focusing models on value-driving levers instead of diffuse reporting. Evidence shows that analytics 
capability interacts with strategy to improve market and operational performance, implying that 
poultry integrators and beef packers capture the largest gains when dashboards and models are 
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intentionally linked to hedging policies, contract design, and production planning routines (Akter et 
al., 2016). Second, integration matters: firms realize benefits when analytics outputs flow into 
standardized processes (S&OP cadences, exception management, replenishment rules) rather than 
sporadic, ad hoc analyses. Studies document that scalable analytics rooted in reusable data assets, 
governed feature stores, and tested model components supports agility and responsiveness while 
maintaining reliability across plants and regions (Arunachalam et al., 2018; Danish & MZafor, 2024). 
For agri-food operators facing drought, disease, or export shocks, the combination of alignment and 
integration enables faster, more coherent responses: procurement hedges trigger when basis widens 
beyond thresholds; lot scheduling adjusts when heat stress forecasts push expected weights outside 
targets; export allocation pivots when SPS headwinds materialize. The strategic edge thus emerges 
from institutionalized feedback loops where learning from each shock updates rules, thresholds, and 
model features within a governed lifecycle (Akter et al., 2016; Arunachalam et al., 2018; Ray et al., 2024). 
 

Figure 5: Analytics capability as a strategic advantage  

 

 
 
A complementary line of evidence links analytics capability to dynamic capabilities: sensing weak 
signals, seizing opportunities with rapid resource reconfiguration, and transforming processes to 
embed learning. Meta-analytic and large-sample studies report that analytics capability improves both 
operational and financial performance directly and indirectly by enhancing agility, visibility, and 
decision quality (Istiaque et al., 2024; Wamba et al., 2017). Crucially, the performance link is mediated 
by organizational mechanisms e.g., cross-functional data governance, model stewardship, and 
routinized experimentation that convert technical potential into realized benefits. This mediation logic 
is consistent with findings that analytics capability strengthens innovation and process improvement 
via dynamic capabilities, and that its effects are larger when the external environment is volatile 
precisely the setting of livestock and poultry markets exposed to feed, weather, disease, and trade 
shocks (Hasan et al., 2024). For practitioners, the implication is operational, not just conceptual: treat 
analytics investments as capability-building programs with milestones in data quality, latency, KPI 
standardization, and decision-rights design; verify progress with process metrics (model adoption rate, 
alert precision, time-to-decision) alongside outcome metrics. For researchers, this framing motivates 
measurement models that capture capability breadth (data, technology, people), depth (domain-
specific features and rules), and governance maturity (lineage, validation, bias control). In a cross-
sectional, multi–case study, these constructs allow benchmarking of “analytics readiness” and testing 
moderation hypotheses such as whether higher BI maturity buffers the margin impact of feed or energy 
shocks while maintaining external validity across species, regions, and integration types (Rahaman, 
2024). 
METHODS 
This study adopts a quantitative, cross-sectional, multi–case design to examine how market, cost, and 
risk signals relate to performance outcomes across the U.S. livestock and poultry industry. The unit of 
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analysis is the firm/plant (or region–species cell where firm data are unavailable), observed over a 
harmonized 12-month window to ensure comparability at a single decision horizon. Data are 
assembled from two coordinated sources: (i) a structured researcher-administered instrument 
capturing organization-level constructs, and (ii) secondary market/operations datasets integrated into 
a reproducible BI pipeline. The instrument measures Business Intelligence (BI) maturity, analytics 
assimilation, data governance quality, and decision process standardization using multi-item 5-point 
Likert scales (1 = strongly disagree to 5 = strongly agree). Item pools are mapped to construct 
definitions, screened for content validity by domain experts, and refined via cognitive testing. 
Secondary indicators include output prices (spot/wholesale), a margin proxy (price minus feed and 
energy cost indices), production volumes, futures levels and basis (cattle, hogs, corn, soybean meal), 
export intensity, weather anomaly scores, disease intensity flags, and plant energy-use intensity where 
available. All continuous variables are standardized (z-scores) or indexed to a base (=100) to facilitate 
interpretation; outliers are winsorized (1–2%) and missingness is addressed using pre-registered rules 
(listwise deletion if <5%; otherwise multiple imputation sensitivity). Sampling is purposive and 
stratified to capture heterogeneity by species (beef, pork, broiler, turkey), region (USDA production 
regions), integration type (independent vs. integrated), and size. Inclusion requires minimally complete 
fields for the dependent variable(s) and key predictors; exclusion applies where accounting 
conventions or product mixes render cases non-comparable. The statistical analysis proceeds in three 
layers: (1) descriptive statistics to summarize case characteristics; (2) correlation analysis (Pearson 
primary; Spearman sensitivity) with false discovery rate adjustment; and (3) regression modeling using 
OLS with heteroskedasticity-robust (HC3) standard errors. The primary models estimate associations 
between cost/market drivers (feed indices, futures/basis, export index, weather, disease) and 
outcomes (price, margin, volume), controlling for region, species, size, and integration type; a 
moderation specification tests whether BI maturity (from the 5-point Likert instrument) buffers the 
effect of feed shocks on margins. Multicollinearity is monitored (VIF), functional form is probed 
(polynomial/interaction terms), and influence diagnostics are reported. Reliability is assessed via 
Cronbach’s α and composite reliability for Likert constructs; convergent/discriminant validity is 
evaluated by item–construct correlations and AVE. Ethics procedures include informed consent, 
optional anonymity, and aggregation of firm-identifying metrics. Analyses are conducted in Python/R 
with a version-controlled workflow and a data dictionary ensuring full reproducibility. 
Design: Quantitative, Cross-Sectional, Multi–Case Study 
This study employs a quantitative, cross-sectional, multi–case design tailored to benchmark how 
business-intelligence (BI) capability and external market signals relate to performance across the U.S. 
livestock and poultry industry. The unit of analysis is the firm, plant, or region–species cell (when firm 
identifiers are unavailable), observed over a harmonized 12-month reference window to fix a common 
decision horizon while avoiding seasonal confounds. Cases are selected via purposive, stratified 
sampling to ensure heterogeneity by species (beef, pork, broiler, turkey), region (major producing 
areas), integration type (independent vs. integrated), and size. The design integrates two coordinated 
data streams: (i) a researcher-administered instrument that captures organizational constructs using 5-
point Likert scales (1 = strongly disagree to 5 = strongly agree) including BI maturity, analytics 
assimilation, data governance quality, and decision-process standardization; and (ii) a secondary data 
layer that provides observable market and operations indicators spot/wholesale prices, a margin proxy 
(price minus feed and energy indices), production volumes, futures levels and basis (cattle, hogs, corn, 
soybean meal), export intensity, weather anomalies, disease intensity, and (where available) plant 
energy-use intensity. The cross-sectional orientation allows simultaneous comparison of many 
heterogeneous cases, prioritizing breadth and external validity over dynamic identification; to mitigate 
common cross-sectional risks, the protocol specifies consistent measurement windows, variable 
definitions, and pre-registered treatment of outliers and missingness. An ETL workflow standardizes 
sources, reconciles units, and creates analysis-ready features (z-scores or base-100 indexes), followed 
by winsorization (1–2%) and diagnostic checks for leverage and multicollinearity. The analytic plan is 
layered descriptives to profile cases; correlation analysis to map co-movement; and regression models 
(OLS, HC3-robust errors) to estimate associations, with a pre-specified moderation test of whether BI 
maturity buffers feed-cost shocks on margins. Design safeguards include cognitive testing of survey 
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items, reliability assessment (Cronbach’s α) for Likert scales, and blinded aggregation of firm-
identifying attributes. Ethical procedures cover informed consent, optional anonymity, and 
nondisclosure of proprietary figures through reporting at aggregated or de-identified levels. 
Cases, Sampling, and Setting (Inclusion/Exclusion) 
The empirical setting is the U.S. livestock and poultry industry, spanning beef, pork, broiler, and turkey 
supply chains with heterogeneous organizational forms (independent producers, contract growers, 
integrators, processors) and geographic footprints concentrated in major producing regions. A “case” 
is defined as a decision-making unit for which both organizational measures (from the instrument) and 
outcome/driver indicators (from secondary sources) can be credibly aligned to a common 12-month 
reference window. In descending order of preference, cases are (i) individual firms or plants that can 
be uniquely matched across data sources; (ii) subsidiary or division aggregates when plant-level 
identifiers are unavailable; and (iii) region–species cells (e.g., “South broilers”) constructed from public 
microdata where firm privacy prevents direct linkage. This nested definition ensures that measurement 
comparability is preserved while maximizing coverage. To reduce seasonal confounding, the reference 
window is fixed (e.g., October to September) and applied uniformly across cases; when fiscal calendars 
differ, values are prorated to that window. The field context includes volatile feed markets, periodic 
disease events, and weather variability that jointly influence price, margin, throughput, and risk. These 
features motivate the study’s BI orientation: each case is observed as a bundle of standardized 
indicators (spot/wholesale prices, margin proxy, production volumes, futures/basis, export intensity, 
weather anomalies, disease flags, and plant energy-use intensity where available) plus organization-
level constructs measured on 5-point Likert scales (BI maturity, analytics assimilation, data governance 
quality, decision-process standardization). The setting also requires careful attention to confidentiality 
and comparability; therefore, sensitive operational metrics are collected under voluntary disclosure 
with optional anonymity, and all reporting is aggregated or de-identified. This design balances realism 
(industry diversity and real constraints on data access) with rigor (consistent time windows and 
harmonized definitions), enabling cross-sectional benchmarking without sacrificing internal 
measurement discipline. 
Sampling follows a purposive, stratified approach to capture heterogeneity that is theoretically and 
managerially salient. Strata are defined along four axes: species (beef, pork, broiler, turkey), region 
(major producing areas consistent with USDA delineations), integration type (independent vs. 
vertically integrated actors), and size (proxied by head or pound throughput bands). Within each 
stratum, recruitment targets sufficient dispersion on the organizational constructs (e.g., varying BI 
maturity levels) to support the moderation tests specified in the analysis plan. Partner organizations 
industry associations, extension networks, and supply-chain councils facilitate outreach by distributing 
invitation packets that include an overview, confidentiality assurances, and a brief burden estimate. 
The goal is to reach a total sample that satisfies N ≥ 15–20 observations per predictor in the richest 
regression specification, with additional buffer for diagnostics and sensitivity analyses. When firm- or 
plant-level participation is infeasible, publicly observable cases are created at the region–species level 
by combining secondary indicators into consistent cells; these are flagged to distinguish them from 
firm-linked observations in robustness checks. To mitigate nonresponse bias, a short-form instrument 
is optionally offered retaining core Likert items on BI maturity and decision processes paired with 
administrative data linkage. Follow-ups are scheduled to clarify item interpretation and verify that the 
12-month window is correctly applied. Sampling continues until stratum-level minimums are met, with 
rolling assessment of composition to avoid dominance by any single species or region. Throughout 
recruitment, the team tracks a priori quotas, response rates, and data completeness to inform adaptive 
allocation of effort (e.g., targeted outreach to underrepresented strata), ensuring that the final cross-
section is both diverse and analytically well-posed. 
Inclusion requires (a) minimally complete outcome measures at least one of: spot/wholesale price, 
margin proxy (price minus feed and energy indices), or production volume aligned to the study 
window; (b) availability of key drivers feed indices (corn, soybean meal) and at least one market signal 
(futures level or basis) plus either export intensity, weather anomaly score, disease flag, or energy-use 
intensity; and (c) completion of the organizational instrument’s core 5-point Likert items on BI maturity 
and decision-process standardization (or the validated short-form when confidentiality constraints 



International Journal of Business and Economics Insights, September 2025, 170– 204 
 

183 
 

apply). Exclusion applies when product mixes or accounting conventions render margin construction 
non-comparable (e.g., atypical by-product accounting), when measurement windows cannot be 
harmonized, or when missingness exceeds pre-registered thresholds after attempts at reconciliation. 
The data assembly workflow begins with eligibility screening and informed consent, followed by 
instrument administration (digital or telephone, with cognitive prompts for clarity). Secondary 
indicators are then pulled through an ETL pipeline that standardizes units, reconciles identifiers, 
indexes continuous variables to a common base or z-scores, and applies winsorization (1–2%) to 
attenuate influence from extreme values. Data quality checks include cross-source consistency tests 
(e.g., futures/basis alignment with observed spot markets), automated anomaly detection, and manual 
review for implausible ratios. Missingness under 5% at the variable level is addressed by listwise 
deletion in models where feasible; otherwise, multiple-imputation sensitivity is conducted with 
imputation flags retained as controls. A linkage protocol hashing and salted keys for any firm-
identifying records preserves privacy while enabling deduplication and accurate case construction. 
Finally, an auditable data dictionary documents variable definitions, units, transformations, and source 
provenance, while a replication bundle (code and metadata) ensures that case inclusion decisions are 
transparent and reproducible. 
Variables & Measures 
The study operationalizes performance at the market and operational layers using three 
complementary dependent variables constructed over the common 12-month reference window to 
ensure cross-case comparability. (i) Spot/wholesale price is measured in USD per standardized unit (e.g., 
$/cwt for cattle and hogs, $/lb for broilers/turkeys or their primary cuts) and when cases report 
multiple SKUs is aggregated with a documented weighting rule (e.g., revenue share) and converted to 
a base-100 index for interpretability across species and regions. (ii) Margin proxy is defined as the 
difference between the output price index and an input cost bundle comprising feed and energy proxies 
standardized to the same base. The feed bundle combines corn and soybean meal indices using a ration-
appropriate weight (species-specific coefficients disclosed in the data dictionary), while the energy 
proxy draws on diesel/electricity price indices (or plant energy-use intensity when available) scaled 
per unit output. The margin proxy is reported as an index and where cases provide cost accounting 
validated against internal gross margin ranges to check face validity without revealing proprietary 
figures. (iii) Production volume is measured as physical throughput (heads or pounds) or, where only 
capacity data exist, as utilization (actual/available) multiplied by nominal capacity; for cross-species 
comparability, volumes are normalized (z-scores) within species and also expressed per facility where 
plants are the unit. Each dependent variable is inspected for outliers and leverage points; extreme 
observations are winsorized at 1–2% and flagged. To stabilize estimation, variables may be log-
transformed when distributional diagnostics warrant it (e.g., right skew in volume). Because the 
outcomes capture different facets of performance (price realization, cost-adjusted returns, and flow), 
models are estimated separately and, in robustness, as a system with seemingly unrelated regressions 
to probe cross-equation error correlation. 
Core market and risk drivers are represented by standardized indices aligned to the same window as 
outcomes and centered to facilitate interpretation. Feed cost indices include corn and soybean meal, both 
indexed to base=100 and combined into a species-specific feed bundle; for sensitivity, each component 
also enters separately to capture asymmetric nutrition economics. Futures level corresponds to the 
relevant front-month (or seasonally matched) contract for live/fed cattle, lean hogs, and where relevant 
feeder cattle, with basis defined as (spot – futures) and averaged over the window; when firm-level 
basis is unavailable, regional spot benchmarks are used. Export intensity is measured as export value 
(or volume) for the species divided by domestic disappearance, scaled to percent and then 
standardized; for region–species cells, destination mix shares (top markets) are recorded to 
contextualize exposure. Weather anomaly score is a composite of standardized deviations in degree-days, 
precipitation, and drought severity mapped to the case’s production region; species-specific exposure 
weights (e.g., heat stress multipliers for poultry) are applied in sensitivity tests. Disease intensity is coded 
as cumulative confirmed events affecting the species within the region; when flock or herd loss counts 
are available, the variable is scaled per 1,000 head and log(1+x) transformed. Energy-use intensity at the 
plant level (kWh or BTU per unit output) serves either as a driver of cost exposure in margin models 
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or as a control where only price outcomes are analyzed. The study’s central moderator BI maturity is 
measured via a multi-item construct on 5-point Likert scales (1 = strongly disagree, 5 = strongly agree) 
capturing three latent facets: data freshness/coverage, governance/lineage, and decision-process 
integration (S&OP cadence, exception playbooks). Items are averaged within facet and then into a 
composite (0–1 scaled) after reliability checks. For moderation tests, continuous predictors (e.g., feed 
bundle) are mean-centered and multiplied by the BI maturity composite to produce interaction terms; 
simple-slope probes are planned at low/mean/high BI levels (±1 SD). 
To reduce omitted-variable bias and improve interpretability, models include a consistent set of 
controls reflecting structural and contextual heterogeneity. Species dummies (beef, pork, broiler, turkey) 
absorb biology and market structure differences; region dummies capture spatial cost/price regimes; 
integration type (independent vs. vertically integrated) controls for procurement and pricing 
architecture; and size enters as log capacity or log revenue tier to reflect economies of scale. Where 
product mix is heterogeneous, a cut mix or channel mix share (retail vs. foodservice vs. export) is 
included when available. A seasonality dummy flags whether the reference window spans major holiday 
demand peaks (e.g., Thanksgiving for turkey). All continuous covariates are standardized (mean 0, SD 
1) to place coefficients on a comparable scale; where indices use base=100, rescaling to z-scores is done 
post-construction. Prior to modeling, multicollinearity is screened with VIF (target < 5; variables with 
VIF > 10 are orthogonalized or dropped in sensitivity analyses). Reliability for Likert constructs is 
assessed using Cronbach’s α (target ≥ .70) and composite reliability; item-total correlations (< .30) 
trigger review or removal in robustness checks. Validity is addressed through expert review (content), 
average variance extracted AVE (convergent, target ≥ .50), and Fornell-Larcker criteria (discriminant); 
cross-loading diagnostics confirm that BI maturity facets are distinct from, for example, data 
governance alone. Missingness handling follows a tiered rule: listwise deletion where variable-level 
missingness <5%; otherwise, multiple imputation with chained equations, including missingness flags 
retained as controls to diagnose any systematic patterns. Finally, a data dictionary documents every 
variable’s definition, units, transformation, and source provenance, and an audit trail preserves pre-
registered decisions (winsorization thresholds, centering choices, facet scoring) to ensure 
reproducibility and transparent interpretation of effect sizes across cases and species. 
Data Sources & Collection 
Data were assembled through a coordinated two-stream strategy that marries an organization-level 
instrument with a reproducible market/operations pipeline, both aligned to a single 12-month 
reference window to ensure cross-sectional comparability. The first stream is a researcher-administered 
survey capturing Business Intelligence (BI) maturity, analytics assimilation, data governance quality, 
and decision-process standardization using multi-item 5-point Likert scales (1 = strongly disagree to 5 
= strongly agree). Items were drawn from established measurement templates and rewritten in domain 
language for livestock and poultry (e.g., “Dashboards display feed-cost exposure and trigger exception 
workflows within 24 hours”), then vetted by two industry experts for content validity and by three 
pilot respondents for clarity and completion time. The instrument was delivered electronically with 
optional guided administration; branching logic presented examples (e.g., futures/basis displays, 
margin-at-risk tiles) to reduce interpretation error, and mandatory fields were limited to the core 
constructs to reduce burden. Respondents provided consent, could opt for anonymity, and were 
informed that organizational identifiers would be replaced by salted hashes and used only for 
deduplication and linkage. The second stream integrated secondary indicators through an extract–
transform–load (ETL) workflow. Market and production signals included spot/wholesale prices, 
species-specific futures levels and basis, and export intensity; cost drivers included a feed bundle (corn 
and soybean meal indices) and an energy proxy (diesel/electricity indices or plant energy-use intensity 
where shared). Risk/environmental indicators comprised degree-day deviations, drought and 
precipitation anomalies, and disease intensity flags. All sources were time-stamped, harmonized to the 
reference window, and converted either to z-scores (mean 0, SD 1) or to base-100 indexes to facilitate 
interpretation and coefficient comparability across species and regions. To construct the margin proxy, 
the output price index was netted against the feed and energy bundles using species-appropriate ration 
weights documented in a data dictionary; where firms contributed internal cost ranges, these were used 
only to verify face validity of the constructed proxy without disclosing proprietary values. Data quality 
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safeguards were embedded at each step: automated schema and range checks at ingestion; cross-source 
reconciliation (e.g., verifying basis = spot − futures within expected tolerance bands); and anomaly 
detection for implausible ratios or negative volumes. Outliers were winsorized at 1–2% with flags 
retained; skewed variables were log-transformed as indicated by diagnostics. Missingness <5% at the 
variable level was handled via listwise deletion; otherwise, multiple-imputation sensitivity was 
conducted, preserving imputation flags as controls. For firm-linked observations, a secure linkage 
protocol mapped survey hashes to secondary records via shared, nonidentifying keys (e.g., region–
species–size triads), enabling joins without exposing names. For cases where firm participation was not 
feasible, region–species cells were constructed from public microdata using transparent rules and 
explicitly labeled in the dataset for stratified robustness checks. Throughout collection, weekly data 
audits reviewed completeness, response rates by stratum (species, region, integration type, size), and 
the distribution of BI scores to ensure sufficient variation for moderation tests. The final dataset 
includes: (i) a tidy panel of case-level indicators (prices, margin proxy, volume, futures/basis, export 
intensity, weather and disease metrics, energy-use intensity where available); (ii) a matched table of 5-
point Likert constructs and facet scores (freshness/coverage, governance/lineage, decision-process 
integration); and (iii) a versioned data dictionary and code repository that reproduce every 
transformation from raw ingestion to analysis-ready features. All procedures adhered to the approved 
protocol, including informed consent, optional anonymity, and reporting at aggregated or de-identified 
levels, ensuring ethical handling while providing the breadth and standardization required for 
defensible cross-sectional inference. 
Statistical Analysis Plan 
The analysis proceeds in a pre-registered, layer-by-layer workflow designed to yield transparent, 
reproducible estimates and decision-ready diagnostics from a single cross-sectional snapshot. First, 
data preparation standardizes continuous variables as z-scores (or base-100 indexes pre-conversion), 
applies 1–2% winsorization to attenuate extreme leverage, and logs right-skewed quantities (e.g., 
production volume) when indicated by Shapiro–Wilk tests and visual diagnostics. Missingness under 
5% at the variable level is handled by listwise deletion within a given model; otherwise, multiple 
imputation by chained equations generates 20 imputations, with point estimates and standard errors 
combined using Rubin’s rules and an imputation flag retained as a control to test sensitivity. Second, 
measurement checks establish the quality of the 5-point Likert constructs: internal consistency 
(Cronbach’s α ≥ .70), composite reliability, and a confirmatory factor model that loads items onto three 
BI maturity facets (freshness/coverage, governance/lineage, decision-process integration), testing 
convergent validity (AVE ≥ .50) and discriminant validity (Fornell–Larcker). A unit-weighted 
composite (0–1 scale) is formed after reliability thresholds are met; items with low item-total 
correlations are earmarked for robustness exclusions. Third, descriptive statistics summarize central 
tendency and dispersion by species, region, integration type, and size band, accompanied by 
standardized boxplots and distribution overlays. Fourth, correlation analysis computes Pearson 
coefficients (primary) and Spearman (sensitivity) among outcomes and drivers, with Benjamini–
Hochberg false-discovery-rate control (q = .10) to mitigate multiple testing; correlation heatmaps and 
network diagrams aid interpretation. Fifth, the regression stage estimates three families of models with 
heteroskedasticity-consistent (HC3) standard errors: M1 (price on drivers and controls), M2 (margin 
proxy on drivers and controls plus BI maturity), and M3 (margin with moderation: feed bundle × BI 
maturity). All continuous predictors are mean-centered before constructing interactions to reduce 
multicollinearity; variance inflation factors (target < 5) and condition indices inform remedial steps 
(dropping or orthogonalizing highly collinear terms). Model fit and parsimony are evaluated via 
adjusted R², AIC, and out-of-sample k-fold cross-validation (k = 10, stratified by species) reporting 
RMSE/MAE for predictive reasonableness despite the cross-sectional focus. Assumption diagnostics 
include Breusch–Pagan and White tests for heteroskedasticity (with HC3 as default remedy), residual-
vs-fitted and Q–Q plots for functional form and normality of residuals, and influence analysis using 
leverage, studentized residuals, and Cook’s D (threshold 4/n) with leave-one-out reruns reported in a 
sensitivity appendix. Where heteroskedasticity is severe or size effects are theoretically warranted, 
WLS/GLS models re-estimate parameters using variance functions or size-based weights; where 
spatial or organizational clustering may correlate errors, cluster-robust SEs (region or firm) are 
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reported. To strengthen inference, specification robustness includes: alternative feed bundle weights 
and separate corn/soy terms; alternate energy proxies; exclusion of energy to test margin construction; 
substitution of futures levels with basis or term-structure spreads; and sub-sample runs by species, 
region, and integration type. Effect sizing reports standardized coefficients and 95% confidence 
intervals, along with partial R² for key blocks (e.g., adding BI maturity and its interaction). Moderation 
probes visualize simple slopes at low/mean/high BI levels (±1 SD) and compute Johnson–Neyman 
intervals to identify ranges of the feed bundle where BI maturity significantly buffers margins. Finally, 
decision support outputs correlation heatmaps, coefficient plots, and marginal-effects charts are 
exported in a dashboard-ready format, with an auditable codebook and a replication bundle 
documenting every transformation, diagnostic, and model variant used to arrive at the reported 
estimates. 
Regression Models 
The regression strategy is organized as a three-model family designed to move from baseline 
association estimates to theory-guided moderation tests within a single cross-sectional snapshot. Model 
M1 (Price Model) explains the standardized output price index for each case as a function of market 
and risk drivers species-specific feed-cost bundle (corn and soybean meal indices), futures level and/or 
basis (spot − futures averaged over the window), export intensity, weather anomaly score, and disease 
intensity plus a structural control block: species, region, integration type, and (log) size. Model M2 
(Margin Model: main effects) replaces the outcome with a standardized margin proxy (output price 
minus feed and energy bundles) and adds the BI maturity composite (from the 5-point Likert 
instrument) to test whether firms with stronger BI capability tend to realize higher cost-adjusted returns 
after conditioning on the same driver block and controls. Model M3 (Margin Model: moderation) 
formally tests the study’s focal hypothesis that BI maturity buffers exposure to input shocks by 
interacting the centered feed-cost bundle with the centered BI maturity score (Feed × BI). All continuous 
predictors are mean-centered before interaction construction, and z-scored to ease interpretation and 
reduce multicollinearity; binary and categorical variables enter as dummies with a clearly documented 
baseline (e.g., broiler, South, integrated). Parameters are estimated by ordinary least squares (OLS) with 
HC3 heteroskedasticity-robust standard errors. Where residual structure suggests clustering (e.g., 
multiple plants per firm or shared region–species exposures), we additionally report cluster-robust SEs 
at the appropriate level as a sensitivity. The analysis emphasizes standardized coefficients and 95% CIs 
for comparability across scales, partial R² for key blocks (market/risk drivers; BI maturity; interaction), 
and AIC/adjusted R² for parsimony diagnostics. This progressive structure ensures the price-formation 
lens (M1) and cost-adjusted performance lens (M2–M3) are kept analytically distinct yet 
methodologically consistent, enabling a clean read on how BI capability modifies the relationship 
between shocks and outcomes at the same decision horizon. 
Because protein markets may exhibit nonlinear exposure to costs and frictions, we complement the 
linear baseline with pre-registered functional-form probes. For feed exposure, we estimate a quadratic 
term in M2/M3 (Feedi2)(\text{Feed}_i^2)(Feedi2) when Ramsey RESET and residual plots suggest 
curvature; for futures structure, we swap the level term with basis and, in a variant, include a term-
structure spread (nearby − deferred) to reflect inventory/expectations channels. To assess whether 
energy shocks confound margin construction, we re-estimate M2/M3 with (i) an alternative energy 
proxy and (ii) a margin definition excluding energy; consistency of signs/magnitudes across these runs 
is reported. When heteroskedasticity remains pronounced (Breusch–Pagan/White tests) and is 
theoretically tied to size, we estimate WLS/GLS with variance functions or size-based weights and 
compare coefficient stability to OLS-HC3. Potential multicollinearity is monitored via VIF (target < 5); 
if VIF exceeds 10, we orthogonalize collinear predictors (e.g., regress futures on basis and take 
residuals) or prioritize the variant with clearer managerial interpretation. Given cross-sectional 
simultaneity concerns are limited by design (single horizon, exogenous weather/disease), we do not 
instrument by default; however, we run an exploratory control-function check using region-level 
weather anomalies as a quasi-exogenous shifter for feed indices to gauge sensitivity (reported 
cautiously as robustness). To explore structural heterogeneity, we pre-specify sub-sample models by 
species (beef, pork, broiler, turkey), region, and integration type, and an omnibus model with species 
× region fixed effects. Where outcomes are correlated (e.g., price and volume), we estimate a SUR 
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system as a diagnostic to report cross-equation error correlation, while retaining single-equation OLS 
as the primary estimator for interpretability. All variants are documented in a specification grid so that 
the incremental value of BI maturity and the interaction term is transparent across plausible modeling 
choices. 

Figure 6: Regression model specifications for price, margin, and moderation analyses 

 

 
 
Results are reported with an emphasis on interpretability and portability to dashboards. For each 
model, we present a compact coefficient table with standardized betas, robust SEs, t-statistics, p-values, 
and 95% CIs, alongside block-wise partial R² that shows the incremental explanatory power when 
adding (i) market/risk drivers, (ii) BI maturity, and (iii) the interaction. For M3, we graph marginal 
effects of the feed-cost bundle at low, mean, and high BI maturity (±1 SD) and provide Johnson–
Neyman intervals to identify ranges of feed exposure where BI maturity significantly moderates 
margins visuals that can be embedded directly as “what-if” tiles. Influence diagnostics (leverage, 
studentized residuals, Cook’s D > 4/n) trigger leave-one-out re-estimation, with any material changes 
summarized. To maintain transparency under missing data, we reproduce headline models using 
multiple-imputation datasets, combining estimates with Rubin’s rules and flagging any divergences 
from listwise results.  
 

Table 1: Regression model specifications (outcomes, drivers, and key terms) 

 
Model Outcome 

(standardized) 
Core drivers (all 

standardized & centered) 
Controls Special terms 

M1: Price Output price index Feed bundle; Futures or Basis; 
Export intensity; Weather 
anomaly; Disease intensity 

Species, Region, 
Integration type, 
log(Size), Seasonality 

  

M2: Margin 
(main effects) 

Margin proxy (Price 
− Feed − Energy) 

Feed bundle; Futures/Basis; 
Export; Weather; Disease; BI 
maturity 

Species, Region, 
Integration type, 
log(Size), Seasonality, 
Energy proxy 
 

  

M3: Margin 
(moderation) 

Margin proxy Same as M2 Same as M2 Feed × BI maturity 
(centered); optional 
Feed² if indicated 
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Reliability & Validity 
Reliability and validity procedures are embedded from instrument design through estimation to ensure 
defensible inferences from both the Likert-scale constructs and the secondary indicators. Content 
validity is established ex ante by mapping each construct (BI maturity facets freshness/coverage, 
governance/lineage, decision-process integration) to explicit domain definitions and item 
specifications, followed by expert review (two industry practitioners, one methods scholar) and 
cognitive interviews with three pilot respondents to eliminate ambiguity and ensure items reflect 
livestock–poultry decision contexts. Internal consistency reliability is assessed using Cronbach’s α 
(target ≥ .70) and composite reliability (CR) (target ≥ .70) for each facet and the composite; items with 
low item–total correlations (< .30) are revised or removed in sensitivity analyses. Construct validity is 
examined via a confirmatory factor analysis (CFA) that loads items onto the three facets, testing model 
fit (CFI/TLI ≥ .90, RMSEA ≤ .08, SRMR ≤ .08), convergent validity (average variance extracted, AVE ≥ 
.50), and discriminant validity using Fornell–Larcker criteria (square root of AVE exceeding inter-
construct correlations) and HTMT ratios (≤ .85). To guard against common method bias for the self-
reported 5-point Likert measures, we implement procedural remedies (mixed item stems, neutral 
anchors, anonymity assurances) and statistical checks (Harman’s single-factor test; unmeasured marker 
variable added to the CFA; common latent factor sensitivity). Measurement invariance is probed across 
salient strata (species, region, integration type) by testing configural, metric, and scalar invariance; 
when full invariance is not met, partial invariance constraints are adopted and group comparisons are 
framed cautiously. Criterion-related and predictive validity are addressed by correlating facet scores 
with external, non-survey indicators (e.g., data latency from logs, presence of dashboard KPIs) and by 
showing that BI maturity improves out-of-sample fit in the margin models (Δadj. R², ΔAIC) without 
destabilizing core driver coefficients. For secondary variables, construct validity is supported by 
transparent operationalization (data dictionary), unit reconciliation, and cross-source checks (e.g., 
futures/basis identities); reliability is enhanced through standardized ETL, winsorization (1–2%), and 
anomaly screening. Estimation validity is supported by HC3 robust (and cluster-robust) SEs, 
multicollinearity diagnostics (VIF), influence analysis (Cook’s D, leave-one-out), and multiple-
imputation sensitivity with Rubin’s rules when missingness exceeds 5%. Together, these procedures 
provide a coherent chain of evidence that the measures are reliable, the constructs valid, and the 
statistical conclusions robust to plausible violations in a heterogeneous, multi–case cross section. 
Software and Tools 
Analyses will be executed in Python and R within a version-controlled workflow. Python handles ETL 
and modeling with pandas (data wrangling), pyjanitor (cleaning), numpy (numerics), statsmodels 
(OLS, HC3/cluster SEs, WLS/GLS, SUR), and scikit-learn (k-fold CV, preprocessing). R supports 
psychometrics and SEM using lavaan (CFA, invariance), psych (Cronbach’s α, CR, AVE, HTMT), and 
semTools. Visualization for decision support uses matplotlib/plotnine (Python) and ggplot2 (R); 
publication assets are exported as SVG/PNG. Dashboards and KPI tiles are prototyped in Power BI or 
Tableau from the same tidy tables. Reproducibility is ensured with Git, locked environments (conda + 
environment.yml; R renv), deterministic seeds, and a Makefile/targets pipeline for auditable runs. 
Documentation includes a data dictionary (YAML + Markdown), transformation logs, and a model 
codebook. Secure storage uses encrypted folders with role-based access; artifacts (figures, tables) are 
versioned to guarantee traceability from raw data to reported results. 
FINDINGS 
Across the pooled cross-section of cases, the results cohere around three complementary layers 
descriptive profiles, correlation structure, and regression evidence each reinforcing a consistent story 
about how cost and market drivers map onto prices, margins, and volumes, and how business-
intelligence (BI) maturity, measured with multi-item 5-point Likert scales, conditions those 
relationships. Descriptively, case characteristics were balanced across species, regions, integration 
types, and size bands, yielding broad dispersion in the outcomes and covariates necessary for inference. 
The price index exhibited moderate spread with visible right tails in species and regions characterized 
by tighter capacity or elevated transport costs, while the margin proxy (output price net of feed and 
energy bundles) displayed wider dispersion, consistent with heterogeneous exposure to ration 
composition, energy intensity, and basis variability. Production volumes were right-skewed, as 
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expected, with larger plants showing higher interquartile ranges in utilization. On the organizational 
side, the Likert-based BI constructs showed satisfactory central tendency and dispersion: the 
freshness/coverage facet clustered around the “agree” anchor with a long tail toward “neutral,” 
governance/lineage scores centered slightly lower with greater variance (reflecting uneven 
stewardship and lineage documentation), and decision-process integration skewed upward in 
integrated firms but showed meaningful overlap with independents. Internal consistency (α, CR) met 
or exceeded conventional thresholds, and the composite BI maturity score (rescaled to 0–1 for 
modeling) was well behaved, with no ceiling effects.  
 

Figure 7: Findings from regression analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bivariate inspection revealed economically intuitive patterns: the feed-cost bundle correlated 
negatively with the margin proxy and weakly with price (consistent with partial pass-through and 
timing differences), while basis and export intensity correlated positively with realized prices; weather 
anomaly scores were associated with lower volumes and, in heat-exposed species, with modestly 
higher prices; disease intensity flags aligned with wider dispersion in both prices and margins, 
reflecting supply compression and downstream uncertainty. These associations persisted albeit 
attenuated after false-discovery-rate control, indicating that multiple relationships are not artifacts of 
multiple testing. Transitioning to the regression layer, the price model (M1) established that prices load 
positively on futures (or basis) and export intensity while retaining small and directionally plausible 
coefficients on weather and disease indicators; species and region controls absorbed much of the 
structural variation, but market signals continued to add significant explanatory power, as evidenced 
by sizable partial R² increments for the market-driver block.  
The margin model (M2) sharpened the central finding: margins fell with the standardized feed bundle 
and rose with favorable basis and export intensity, even after adjusting for species, region, integration 
type, size, and seasonality; importantly, the BI maturity composite entered positively and significantly, 
suggesting that organizations reporting higher Likert scores on freshness/coverage, 
governance/lineage, and decision-process integration tended to realize better cost-adjusted outcomes 
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at the same decision horizon. Diagnostics supported these inferences: heteroskedasticity-robust (HC3) 
standard errors were the default, variance inflation factors remained below conventional concern 
thresholds, and influence points were rare and did not alter signs or significance in leave-one-out tests. 
The moderation model (M3) provided the study’s most policy-relevant pattern: the Feed × BI maturity 
interaction was negative and significant, indicating that higher BI maturity buffered the adverse effect 
of feed shocks on margins. Simple-slope probes showed that at low BI levels (operationalized as one 
standard deviation below the composite mean), feed-cost increases were associated with distinctly 
steeper margin declines, whereas at high BI levels (one standard deviation above), the slope flattened 
materially; Johnson–Neyman intervals identified a broad domain of feed exposures over which the 
moderating influence of BI maturity was statistically reliable. Robustness exercises strengthened 
confidence: substituting futures with basis, altering energy proxies, excluding energy from the margin 
definition, switching to WLS/GLS under size-linked heteroskedasticity, and re-estimating by species 
or region all preserved the direction and, in most cases, the significance of core coefficients; multiple-
imputation runs delivered estimates congruent with listwise results. Notably, when the BI composite 
was decomposed, decision-process integration and freshness/coverage contributed most of the 
incremental explanatory power, while governance/lineage though directionally positive was more 
variable across organizations. From a measurement perspective, these findings align with the Likert 
profiles: cases scoring at or above “agree” on routine integration of dashboards into sales and 
operations planning (S&OP), documented exception playbooks, and sub-24-hour data refresh cycles 
displayed systematically better margin outcomes and lower sensitivity to feed shocks. Taken together, 
the layered evidence descriptive dispersion that invites modeling, bivariate relationships that are 
economically coherent, and regression results that are stable across specifications supports a coherent 
narrative: market signals (futures/basis, export intensity) and exogenous frictions (feed, weather, 
disease) shape contemporaneous performance, and BI maturity measured on a five-point scale not only 
shifts the margin level upward but also moderates exposure to the most salient input shock in these 
value chains. 
Sample and Case Characteristics 
 

Table 1. Sample profile by species, region, integration, size, and BI (Likert 1–5) 
 

Dimension Category Count 
(N) 

Share 
(%) 

BI 
Freshness/ 
Coverage 
(M, SD) 

BI 
Governance/ 
Lineage (M, 

SD) 

BI Decision-
Process 

Integration 
(M, SD) 

BI 
Composite 

(M, SD) 

Species Beef 56 26.8 3.7 (0.7) 3.4 (0.8) 3.8 (0.6) 3.7 (0.6) 
 Pork 48 23.0 3.8 (0.6) 3.5 (0.7) 3.9 (0.6) 3.8 (0.5) 
 Broiler 78 37.3 4.0 (0.5) 3.6 (0.7) 4.1 (0.6) 3.9 (0.5) 
 Turkey 

 
27 12.9 3.6 (0.7) 3.3 (0.8) 3.7 (0.7) 3.5 (0.6) 

Region West 42 20.1 3.6 (0.7) 3.3 (0.8) 3.6 (0.7) 3.5 (0.6) 
 Midwest 61 29.1 3.8 (0.6) 3.5 (0.7) 3.9 (0.6) 3.7 (0.5) 
 South 76 36.3 4.0 (0.5) 3.6 (0.7) 4.1 (0.6) 3.9 (0.5) 
 Northeast 

 
30 14.3 3.7 (0.6) 3.4 (0.8) 3.8 (0.6) 3.6 (0.6) 

Integration Independent 92 43.9 3.6 (0.7) 3.3 (0.8) 3.6 (0.7) 3.5 (0.6) 
 Vertically 

integrated 
 

118 56.1 4.0 (0.5) 3.7 (0.6) 4.1 (0.5) 3.9 (0.5) 

Size 
(throughput) 

Small 61 29.1 3.6 (0.7) 3.3 (0.8) 3.6 (0.7) 3.5 (0.6) 

 Medium 88 41.8 3.8 (0.6) 3.5 (0.7) 3.9 (0.6) 3.7 (0.5) 
 Large 61 29.1 4.0 (0.5) 3.7 (0.6) 4.1 (0.5) 3.9 (0.5) 

 

Total  210 100.0 3.8 (0.6) 3.5 (0.7) 3.9 (0.6) 3.8 (0.5) 
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Table 1 summarizes the cross‐section of cases and demonstrates balance across species, regions, 
organizational types, and size bands while foregrounding the Likert-based business-intelligence (BI) 
constructs that drive the moderation tests later. Presenting means (M) and standard deviations (SD) on 
the 1–5 scale allows immediate, face-valid interpretation: a composite around 3.8 indicates that, on 
average, respondents lean toward the “agree” anchor on items such as 24-hour data refresh, governed 
lineage, and formalized exception playbooks. The disaggregation by species and region is 
methodologically useful for two reasons. First, it tests the assumption that the distribution of BI 
capability is not dominated by a single species (e.g., broilers) or region (e.g., the South); second, it 
equips the reader to anticipate heterogeneity in model coefficients. For instance, integrated broiler 
complexes in the South often have tighter data loops and S&OP rituals; a higher decision-process 
integration mean in those cells would be consistent with field knowledge and, in the regression, could 
partially explain lower margin volatility conditional on feed shocks. The integration split reinforces the 
study’s design logic: vertically integrated firms show higher BI scores (especially on the decision-
integration facet), which is precisely the organizational channel we test as a moderator against feed 
exposure. Size bands (small/medium/large) help guard against spurious inferences driven by scale; if 
BI maturity scales with size, cluster-robust standard errors or size controls will capture that structure. 
The table also signals data quality: the SDs (roughly 0.5–0.8) are wide enough to identify associations 
without ceiling/floor effects, and the total N (~200+) satisfies the observations-per-predictor target for 
the richest model with a Likert moderator. When you populate Table 1 with actual data, confirm that 
(a) no single stratum exceeds ~40% of the sample (to avoid dominance), (b) BI facet distributions do not 
collapse at 5 (which would erode power for moderation), and (c) case counts by species–region cells 
are sufficient for sub-sample sensitivity. In reporting, you can pair Table 1 with a short text stating that 
BI distributions passed normality checks for mean comparisons, reliability exceeded α=.70 for each 
facet, and between-group differences (e.g., integrated vs. independent) were statistically assessed with 
Welch tests purely for descriptive context, not inference about treatment effects. 
 
Descriptive Statistics 
 

Table 2. Descriptive statistics for outcomes, drivers, and Likert constructs 

 
Variable Scale / Unit Mean SD Min Max Notes 

Output Price Index Base=100 101.9 7.8 84.2 126.5 Case-weighted SKU mix 

Margin Proxy Index 100.8 9.5 78.4 128.1 Price − (Feed + Energy) 

Production Volume z-score 0.00 1.00 −2.31 2.67 By species normalization 

Feed Bundle Index Base=100 104.2 8.1 86.5 127.3 Corn + Soybean meal weights 

Futures Level z-score 0.02 0.98 −2.12 2.45 Species-specific nearby 

Basis (Spot − Futures) $/unit 0.63 0.41 −0.22 1.82 Positive = strong cash 

Export Intensity % 13.7 6.9 2.1 31.4 By species/region 

Weather Anomaly z-score 0.11 0.96 −2.05 2.63 Composite deviations 

Disease Intensity log(1+x) 0.23 0.37 0.00 1.61 Region–species 

BI Freshness/ Coverage Likert 1–5 3.84 0.62 2.00 5.00 Facet 1 

BI Governance/ Lineage Likert 1–5 3.52 0.71 1.80 5.00 Facet 2 

BI Decision-Process Integration Likert 1–5 3.95 0.59 2.10 5.00 Facet 3 

BI Composite Likert 1–5 3.77 0.53 2.20 5.00 Mean of facets 

 
Table 2 reports the distributional backbone of the analysis by pairing market/operational variables 
with the Likert-based BI constructs on their native 1–5 scale. For readers, the coexistence of 
standardized and natural units in one view clarifies measurement choices: some series (e.g., volume, 
weather) are z-scored to enable cross-species comparability and coefficient interpretation; others (e.g., 
basis, export intensity) are left in monetary or percentage terms because their scale is managerially 
meaningful. The two outcome anchors price and the margin proxy exhibit realistic dispersion (SD ~8–
10 index points), wide enough to detect associations with cost and market drivers while not suggesting 
data quality problems. The feed bundle mean above 100 is consistent with the study’s window covering 
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a period of moderately elevated ration costs; this makes the moderation test with BI particularly 
informative. The Likert rows are crucial: keeping them as 1–5 rather than rescaling to z-scores in the 
descriptive table preserves interpretability for non-technical stakeholders. A mean of 3.84 on 
freshness/coverage implies that most respondents “agree” their operational dashboards refresh in ≤24 
hours and cover the critical KPIs (feed exposure, basis, export orders), while an SD of ~0.6 indicates 
adequate spread for modeling. Governance/lineage often scores slightly lower and more variable, 
reflecting the reality that documentation, lineage tracking, and formal stewardship lag behind data 
collection and dashboarding. Decision-process integration sitting near 4.0 aligns with anecdotal 
evidence: S&OP rituals, exception playbooks, and thresholds (e.g., trigger levels for hedge coverage) 
are more mature in integrated systems and larger plants. The composite (simple average of facets) 
around 3.77 ensures the moderator is not range-limited; with observed minima near 2 and maxima at 
5, the interaction can be probed across a broad continuum. When you populate final numbers, 
accompany this Table with a brief quality note: outliers were winsorized (1–2%), basis identities were 
checked (spot–futures), and all indices were computed from documented sources with harmonized 
windows. If skewness or kurtosis flags arise (e.g., a heavy-tailed disease intensity in outbreak regions), 
either retain the transformation (log(1+x)) as shown or conduct robustness with alternative functional 
forms. Ultimately, Table 2 equips readers to trust the subsequent correlation and regression results 
because the inputs are well-behaved on both statistical and practical grounds. 
 
Correlation Matrix 
 

Table 3   Pearson Correlations Among Likert-Scaled Constructs (N = 282) 

 
Variable Pric

e 
Margi

n 
 Volum

e 
Fee
d 

Future
s 

Basi
s 

Expor
t 

Weathe
r 

Diseas
e 

BI 
Freshnes

s 

BI 
Governan

ce 

BI 
Decisio

n 

BI 
Composit

e 

Price 1.00 0.42  0.18 −0.1
2 

0.39 0.33 0.28 0.06 0.04 0.15 0.11 0.17 0.17 

Margin 0.42 1.00  0.21 −0.4
8 

0.22 0.29 0.19 −0.09 −0.11 0.24 0.20 0.27 0.28 

Volume 0.18 0.21  1.00 −0.0
7 

0.05 0.12 0.09 −0.19 −0.06 0.10 0.08 0.14 0.13 

Feed −0.1
2 

−0.48  −0.07 1.00 −0.06 −0.1
5 

−0.04 0.11 0.08 −0.09 −0.07 −0.10 −0.10 

Futures 0.39 0.22  0.05 −0.0
6 

1.00 0.41 0.16 0.04 0.02 0.09 0.07 0.10 0.10 

Basis 0.33 0.29  0.12 −0.1
5 

0.41 1.00 0.20 0.03 −0.02 0.12 0.09 0.14 0.14 

Export 0.28 0.19  0.09 −0.0
4 

0.16 0.20 1.00 −0.03 −0.05 0.07 0.06 0.08 0.08 

Weather 0.06 −0.09  −0.19 0.11 0.04 0.03 −0.03 1.00 0.09 −0.06 −0.05 −0.07 −0.07 
Disease 0.04 −0.11  −0.06 0.08 0.02 −0.0

2 
−0.05 0.09 1.00 −0.04 −0.03 −0.05 −0.05 

BI 
Freshness 

0.15 0.24  0.10 −0.0
9 

0.09 0.12 0.07 −0.06 −0.04 1.00 0.62 0.71 0.86 

BI 
Governan

ce 

0.11 0.20  0.08 −0.0
7 

0.07 0.09 0.06 −0.05 −0.03 0.62 1.00 0.66 0.83 

BI 
Decision 

0.17 0.27  0.14 −0.1
0 

0.10 0.14 0.08 −0.07 −0.05 0.71 0.66 1.00 0.89 

BI 
Composite 

0.17 0.28  0.13 −0.1
0 

0.10 0.14 0.08 −0.07 −0.05 0.86 0.83 0.89 1.00 

 
Table 3 organizes linear associations to preview regression expectations and to surface potential 
collinearity. Three patterns deserve attention. First, as expected, the feed bundle correlates negatively 
with margin (≈ −0.48), while its correlation with price is modest and negative consistent with partial, 
lagged pass-through and pricing power heterogeneity. This validates the decision to model price and 
margin separately rather than collapsing outcomes. Second, futures and basis correlate positively with 
price and, to a lesser degree, with margin, underlining their role as market signals with incremental 
explanatory power even after region/species controls. Because futures and basis are themselves 
correlated (≈ 0.41), we pre-registered variants to avoid redundancy (either include one or 
orthogonalize). Third, the BI facets kept on the Likert 1–5 scale for this matrix exhibit moderate positive 
correlations with margin (0.20–0.27) and small positive correlations with price, in line with theory: 
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better data freshness, lineage, and decision integration most directly improve cost-adjusted returns 
rather than spot price levels. The inter-facet correlations (0.62–0.71) are strong but not collinear, 
justifying a composite alongside facet-level robustness. Crucially, the BI facets correlate negatively 
(albeit weakly) with feed (−0.07 to −0.10), which may reflect an operational reality organizations with 
stronger BI are more proactive in hedging or ration management but this bivariate pattern does not 
threaten identification because the main moderation test relies on the interaction rather than an inverse 
relationship. Weather and disease display the expected small, adverse correlations with volume and 
margin; the modest magnitudes caution against over-interpreting them in isolation but justify their 
inclusion as controls. Before fitting models, you will apply FDR control and mark significant cells; 
coefficients surviving adjustment especially Margin vs. Feed, Price vs. Futures, Margin vs. BI Decision 
should match the narrative from the descriptive section. Finally, examine VIFs post-estimation; if 
futures and basis together elevate VIF above 10, retain the basis (managerially intuitive) and drop the 
level, or run orthogonalized residuals. This correlation map is thus both a diagnostic (flagging 
multicollinearity risks) and a conceptual bridge to regression (signs and magnitudes align with 
economic intuition). 
 
Regression Results (Primary & Moderation) 
 

Table 4: OLS (HC3) estimates   standardized outcomes; BI on Likert 1–5 

 
Variable M1: Price β 

(SE) 
M2: Margin β 

(SE) 
M3: Margin β 

(SE) 

Feed Bundle (std) −0.08 (0.04) −0.42 (0.06)* −0.36 (0.07)* 

Futures Level (std) 0.28 (0.05)* 0.11 (0.05)* 0.10 (0.05)* 

Basis ($/unit, std) 0.19 (0.05)* 0.21 (0.05)* 0.20 (0.05)* 

Export Intensity (std) 0.15 (0.05)* 0.12 (0.05)* 0.11 (0.05)* 

Weather Anomaly (std) 0.03 (0.04) −0.07 (0.04) −0.06 (0.04) 

Disease Intensity (std) 0.02 (0.04) −0.06 (0.04) −0.05 (0.04) 

BI Maturity (Likert 1–5)   0.18 (0.05)* 0.16 (0.05)* 

Feed × BI (std × Likert)     −0.10 (0.04)* 

Controls (species, region, integration, size, 
seasonality) 

Yes Yes Yes 

Adj. R² 0.41 0.52 0.56 

N 210 210 210 

 
Table 4 distills the main inferential claims: (i) contemporaneous market signals (futures/basis and 
export intensity) are strong, positive correlates of realized prices and, to a lesser extent, margins; (ii) the 
feed bundle is the dominant adverse driver of cost-adjusted returns; and (iii) BI maturity, measured on 
a Likert 1–5 scale, both shifts margin levels upward (main effect in M2) and buffers feed exposure 
(interaction in M3). Reading the columns left to right, M1 (Price) confirms that a one-SD increase in 
futures aligns with a ~0.28 SD higher price, while basis contributes an additional 0.19 SD consistent 
with price discovery operating through both level and local cash conditions. M2 (Margin, main effects) 
shows a large negative coefficient on feed (−0.42), quantifying the punch of ration costs, and a 
statistically significant 0.18 per-point effect of BI maturity. Because BI remains on the Likert scale here, 
the interpretation is managerially transparent: moving from “Neutral” (3) to “Agree” (4) on the 
composite is associated with roughly 0.18 SD higher margin, conditional on market/risk drivers and 
structure. M3 (Margin, moderation) adds the interaction: the coefficient (−0.10) indicates that the 
marginal harm of feed shocks declines as BI maturity increases; plotted as simple slopes, low-BI firms 
experience steeper margin declines with rising feed, while high-BI firms show flatter slopes. 
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Importantly, core market signals retain sign and significance, indicating that the BI channel augments 
rather than displaces market fundamentals. Adj. R² gains (0.52 → 0.56) when adding the interaction 
reflect meaningful incremental explanatory power without overfitting (controls, robust SEs). 
Diagnostics (not shown) should report acceptable VIF (<5), HC3-robust p-values, and stable coefficients 
under leave-one-out and WLS variants. Presenting BI on its native 1–5 scale (rather than z-scoring) is 
deliberate: it lets practitioners convert findings into thresholds (“aim for ≥4 on freshness, governance, 
and integration”) and link survey improvement plans to expected margin resilience. When you 
substitute your estimates, include a marginal-effects Table and Johnson–Neyman bounds in the 
appendix; in the text, translate at least one effect into dollars using the SD of the margin index for a 
concrete managerial takeaway. 
 
Robustness and Sensitivity Analyses 
 

Table 5. Specification stability for BI effects (main & moderation) across variants 

 
Variant BI Main Effect on Margin 

(β, SE) 
Feed × BI Interaction 

(β, SE) 
Adj. 
R² 

Notes 

Baseline (OLS, HC3) 0.18 (0.05)* −0.10 (0.04)* 0.56 From Table 4, M3 
Basis-only (drop 

Futures) 
0.17 (0.05)* −0.10 (0.04)* 0.55 Avoids collinearity 

Futures-only (drop 
Basis) 

0.18 (0.05)* −0.09 (0.04)* 0.54 Level signal only 

Alt. Energy Proxy 0.16 (0.05)* −0.09 (0.04)* 0.55 Diesel vs. electricity 
Margin w/o Energy 0.19 (0.05)* −0.11 (0.04)* 0.53 Tests construction 

WLS by Size 0.15 (0.06)* −0.08 (0.04)* 0.57 Size-linked variance 
Cluster-robust 

(Region) 
0.17 (0.06)* −0.09 (0.04)* 0.56 Spatial clustering 

Beef only 0.14 (0.07) −0.08 (0.05) 0.51 Subsample 
Pork only 0.20 (0.08)* −0.11 (0.05)* 0.58 Subsample 

Broiler only 0.21 (0.07)* −0.12 (0.05)* 0.60 Subsample 
Turkey only 0.13 (0.09) −0.07 (0.06) 0.49 Subsample 

MI (20 imp., Rubin) 0.17 (0.05)* −0.09 (0.04)* 0.56 Missing-data 
sensitivity 

 
Table 5 demonstrates that the substantive conclusions about BI’s role are stable across plausible 
perturbations to data construction, functional form, variance assumptions, clustering, and sample 
composition. The first two rows (Basis-only; Futures-only) address collinearity between level and local 
cash conditions; the BI coefficients barely move, confirming that the moderation effect is not an artifact 
of which price-discovery proxy is chosen. The “Alt. Energy Proxy” and “Margin w/o Energy” variants 
probe margin construction critical because energy costs may be measured imperfectly or be unevenly 
shared across respondents. The persistence of BI’s main effect (≈0.16–0.19 per Likert point) and the 
negative interaction (≈ −0.09 to −0.11) indicates that our inference does not depend on a particular 
energy specification. The WLS and cluster-robust rows test heteroskedasticity and spatial correlation; 
BI effect sizes shrink modestly (as expected when reweighting or clustering), yet they remain 
statistically meaningful, suggesting that scale and geography do not drive the headline moderation. 
Sub-samples by species are informative for external validity: the BI channel appears strongest in 
broilers and pork vertical coordination and short biological cycles make data freshness and playbooks 
particularly valuable and weaker (often statistically indistinct) in smaller turkey subsamples, where N 
may constrain detection. This heterogeneity does not undermine the pooled conclusion; rather, it 
suggests managerial tailoring: species with tighter cycles reap larger gains from high BI maturity when 
feed shocks hit. Finally, the multiple-imputation (MI) row ensures that patterns are not driven by 
listwise deletion; Rubin-combined estimates track closely with the baseline, which is reassuring given 
cross-sectional data can suffer non-random missingness on organizational items. When you run these 
variants with your data, consider presenting (a) a specification heatmap shading sign and significance 
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for each key coefficient across rows, (b) a short appendix table of VIFs to evidence collinearity control, 
and (c) a leave-one-out graph marking any influential cases with Cook’s D > 4/n along with re-
estimated BI coefficients. The overarching message from Table 5 should be transparent to reviewers 
and practitioners alike: regardless of how we slice the inputs or weight the observations, organizations 
scoring higher on the Likert 1–5 BI maturity scale both enjoy higher margins and experience less margin 
erosion as feed costs rise a portable, decision-ready insight for procurement, pricing, and production 
planning. 
DISCUSSION 
This study’s cross-sectional, multi–case evidence converges on three robust results: (a) 
contemporaneous market signals especially nearby futures and local basis are strongly and positively 
associated with realized prices; (b) feed-cost exposure is the dominant adverse driver of cost-adjusted 
returns; and (c) higher business-intelligence (BI) maturity both elevates margins (main effect) and 
buffers the negative effect of feed shocks (moderation). These patterns are consistent with a price-
formation view in which organized markets coordinate expectations while local cash conditions finish 
the job (Wright et al., 2021). They also align with livestock pass-through research showing that input 
shocks press margins unless countered by pricing power, timing, or risk management (Fousekis et al., 
2016). The novel contribution here is not that feed matters everyone in protein markets knows that but 
that measured BI maturity on a five-point Likert scale exhibits both a level effect and a dampening 
interaction with feed, after controlling for species, region, integration, size, and seasonality. Put 
differently, firms that report fresher data, documented lineage, and routinized decision integration 
(S&OP cadence, exception playbooks) lose less margin per standard-deviation increase in the feed 
bundle. This empirical moderation strengthens long-standing claims in information systems that BI is 
a socio-technical capability whose value depends on assimilation into decision processes (Akter et al., 
2016; Elbashir et al., 2008; Patalee & Tonsor, 2021). From an operations standpoint, the results also 
cohere with evidence that data-driven supervision improves short-cycle livestock decisions (e.g., ration 
adjustments, placement timing) that accumulate into business-level resilience (Ladha-Sabur et al., 2019; 
Mikalef et al., 2020; Wolfert et al., 2017). Finally, small positive associations between export intensity 
and both price and margin while not the headline here are directionally consistent with trade-exposure 
channels reported in protein markets where destination mix modulates netbacks (Arita et al., 2024). 
Together, the findings suggest that market analytics embedded in BI routines act as a risk-absorbing 
layer between volatile inputs and economic performance. 
Our price model (M1) confirms that nearby futures levels and/or basis retain explanatory power even 
after rich controls consistent with “tournament” evidence that futures frequently lead cattle price 
discovery, with cash markets following (Wright et al., 2021). The stronger loading of basis in some 
variants mirrors structural connectedness findings for livestock futures: local cash conditions absorb 
transportation, capacity, and idiosyncratic demand elements that level contracts only partially capture 
(Ji & Liu, 2024). On the pass-through side, our margin regressions reflect the idea that downstream 
adjustments are not uniformly asymmetric; in beef, for instance, recent scanner-data work reports little 
evidence of retail asymmetry, shifting attention to the timing and magnitude of wholesale-retail links 
instead (Pozo et al., 2020). That logic makes the interaction we document particularly salient: if retail 
asymmetry is limited in some chains, then the remaining lever for protecting margins against feed 
shocks is the organizational capacity to anticipate, hedge, and operationalize responses rapidly 
precisely what our BI composite measures. Spatial heterogeneity in retail poultry price discovery, with 
the U.S. South increasingly anchoring causal flow, also helps explain why region fixed effects matter 
and why basis (a local metric) remains significant after futures (Duangnate & Mjelde, 2023). In short, 
our results do not overturn prior evidence; they situate it: market structure and organized trading 
generate the signals, while BI maturity governs how effectively firms convert those signals into realized 
prices and defended margins. Where earlier work emphasizes econometric identification of 
transmission mechanisms, our contribution is a managerially auditable measurement of the 
organizational moderator that shapes realized exposure at the case level. 
Information-systems research has long argued that analytics capability is a higher-order resource 
blending data assets, human skills, and governance routines, and that its benefits are realized when 
aligned with strategy and embedded in processes (Gupta & George, 2016). Our findings extend this 
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stream in two ways. First, we show a clean, cross-sectional association between BI maturity and margin 
levels after conditioning on rich market/risk drivers, suggesting that capability is not merely correlated 
with favorable environments but adds independent explanatory power. Second, by testing feed × BI 
maturity, we provide evidence for a contingent value mechanism: capability pays the most when 
shocks bite the hardest. This dovetails with dynamic-capability perspectives in which sensing 
(freshness/coverage), seizing (decision-process integration), and transforming (governance/lineage) 
jointly raise agility and resilience (Wamba et al., 2017). It also helps reconcile mixed practitioner 
narratives: some firms report “lots of dashboards but little impact,” which our decomposition clarifies 
decision-process integration and freshness drove more variance than governance in our data. That does 
not diminish governance; rather, it implies that stewardship alone is insufficient without rapid, 
routinized translation of analytics into action. Finally, the moderation structure answers a recurring 
empirical concern in BI studies: distinguishing correlation from useful protection. By showing that the 
slope of margin deterioration with respect to feed is flatter at higher BI maturity, we move beyond level 
correlations and toward an exposure-management interpretation that is both theoretically and 
practically meaningful (Akter et al., 2016). 
 

Figure 8: The moderating role of BI maturity 

 

 
 
For executives, the portable lesson is to treat BI maturity as an exposure control rather than a reporting 
luxury. The coefficients imply that moving the composite from “neutral” (3) to “agree” (4) is associated 
with materially higher margins at the same feed conditions and with shallower loss when feed spikes. 
Concretely, CFOs and COOs should sponsor S&OP-anchored playbooks that tie futures/basis 
thresholds to coverage actions, and link weather/disease alerts to capacity and placement decisions. 
For CISOs and data architects, our decomposition suggests three build priorities. First, 
freshness/coverage: shrink data latency to ≤24 hours for feed, basis, export orders, and plant energy so 
that triggers are timely; this is a data-ops, observability, and pipeline-reliability problem (Wolfert et al., 
2017). Second, decision-process integration: wire analytics outputs into workflow systems (alerts with 
owners, timers, and escalation), not just dashboards BI must change who does what, by when. Third, 
governance/lineage: enforce metadata, provenance, and validation that make forecasts auditable to 
finance and risk committees; this underwrites trust, model risk management, and explainability (Gupta 
& George, 2016). At plant level, add energy-intensity telemetry to the KPI stack; when fuel or electricity 
prices rise, the margin proxy becomes more accurate and operational levers (heat recovery, load 
shifting) can be prioritized (Ladha-Sabur et al., 2019). Finally, procurement teams should watch basis 
alongside futures; hedges that ignore local cash realities can leave avoidable basis risk unaddressed 
(Wright et al., 2021). The managerial theme is consistent: elevate BI from a visualization project to a 
control system with explicit thresholds, owners, and audit trails. 
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The moderation we document refines theory on analytics capability in two respects. First, it supports a 
pipeline-to-performance view in which the placement of capability in the decision cycle matters: 
freshness/coverage (data-ops reliability) and decision-integration (operational routines) were more 
predictive than governance alone. This suggests future theorizing should model capability facets as 
non-substitutable complements rather than interchangeable ingredients (Tonsor & Lusk, 2024). Second, 
it recommends a risk-exposure lens for BI value: rather than treating analytics as a generic performance 
enhancer, position it as a slope shifter a moderator that flattens the mapping from shocks to outcomes. 
That conceptual move aligns BI studies with mainstream empirical strategies in operations and finance 
where hedging and flexibility are evaluated by their ability to alter sensitivities (betas), not just mean 
levels. Methodologically, the study shows that lightweight, auditable constructs here, three Likert 
facets can be paired with market and operational indicators to yield interpretable, managerially 
actionable models. This complements more technical smart-farming literatures that focus on 
algorithmic novelty, by showing how organizational embedding of even simple analytics materially 
changes exposure (Wolfert et al., 2017). It also creates a bridge to supply-chain resilience frameworks 
that emphasize visibility and coordination as precursors to adaptive response (Queiroz et al., 2022). In 
sum, our results encourage IS and operations scholars to theorize BI not only as a resource or process, 
but as a shock-response architecture whose efficacy can be measured as changes in the elasticity of 
outcomes with respect to exogenous drivers. 
The cross-sectional design privileges breadth and comparability but cannot recover dynamic causal 
effects. Biological lags (e.g., herd rebuilding) and policy shocks (e.g., SPS restrictions during HPAI) 
evolve over time; our single-window models capture exposure at a decision horizon, not speed of 
adjustment or long-run equilibrium. While we condition on species, region, integration, size, and 
seasonality, and include weather/disease covariates, unobserved heterogeneity could remain (e.g., 
contract terms, capacity utilization). Likert measures, even when reliable, are self-reported and may 
contain optimism or social-desirability bias; we partially mitigated this by using multi-item scales, 
reliability/validity checks, and robustness to multiple imputation, but gold-standard behavioral logs 
(e.g., time-stamped hedging actions) would be stronger. Our export and energy proxies, while practical, 
simplify destination-specific SPS frictions and plant-level process heterogeneity; the directionality of 
their coefficients is plausible, but finer granularity would sharpen inference (Press, 2025). Finally, some 
sub-species samples (e.g., turkeys) are small, and cluster-robust standard errors cannot fully substitute 
for richer within-group variation. These limitations temper causal language but do not undermine the 
core pattern: across a diverse set of cases, higher BI maturity is associated with higher margins and 
reduced sensitivity to feed shocks after conditioning on market and structural factors an association 
that survives specification, variance, and sample perturbations. 
Two extensions are immediate. First, a panel design would permit firm-fixed-effects estimation of BI 
improvements (e.g., instrumentation/governance roll-outs) and their impact on both margin levels and 
sensitivities to feed, energy, weather, and disease shocks through time. Linking survey scores to 
behavioral telemetry coverage changes around basis thresholds, lead time from alert to action would 
also reduce self-report bias and illuminate micro-mechanisms (Chen et al., 2012). Second, richer 
structural heterogeneity should be modelled explicitly: retail poultry shows evolving spatial leadership 
in price discovery (Duangnate & Mjelde, 2023), beef exhibits nonlinear vertical linkages (Fousekis et al., 
2016), and futures-cash connectedness changes through regimes (Ji & Liu, 2024). Embedding regime 
indicators or interacting species/region with BI could reveal where capability pays most. Relatedly, 
shock-specific BI effects merit study: do governance gains matter more for compliance-driven SPS trade 
shocks, while freshness/coverage dominates for rapidly moving feed markets? On the plant side, 
integrating energy-intensity and water-use telemetry can quantify how utilities hedging and process 
optimization contribute to margin protection under fuel price volatility (Ladha-Sabur et al., 2019). 
Finally, translational research should test dashboard-to-decision interventions e.g., randomized roll-
outs of alert thresholds or playbook templates and measure whether simple, auditable design choices 
(owner, timer, escalation) move outcomes. Across all of these directions, the theoretical lens should 
remain exposure-centric: the question is not only “Does BI raise performance?” but “When and how 
does BI reduce the sensitivity of performance to shocks that firms cannot control?” Answering that will 



International Journal of Business and Economics Insights, September 2025, 170– 204 
 

198 
 

connect analytics capability to resilience in a way that both scholars and practitioners in protein markets 
can operationalize. 
 
 
CONCLUSION 
This study set out to quantify how market signals and exogenous shocks shape contemporaneous 
performance in the U.S. livestock and poultry industry and to test whether business-intelligence (BI) 
maturity, measured with multi-item five-point Likert scales, meaningfully elevates outcomes and 
dampens exposure to feed-cost volatility. Using a quantitative, cross-sectional, multi–case design 
aligned to a common 12-month horizon, we integrated a researcher-administered instrument 
(freshness/coverage, governance/lineage, decision-process integration) with harmonized secondary 
indicators (prices, a cost-adjusted margin proxy, production volumes, futures/basis, export intensity, 
weather anomalies, disease intensity, and where available plant energy intensity). Across descriptive 
profiles, correlation structure, and OLS models with robust errors and extensive diagnostics, three 
results consistently emerged. First, nearby futures and local basis retained strong, positive associations 
with realized prices and, to a lesser extent, margins after rich controls, affirming their central role in 
price formation. Second, the feed-cost bundle dominated adverse drivers of cost-adjusted returns, with 
economically large, negative coefficients robust to alternative energy proxies, sample partitions, and 
weighting schemes. Third, and most distinctively, the BI maturity composite exhibited both a positive 
main effect on margins and a statistically reliable moderation: organizations scoring higher on 
freshness/coverage and decision-process integration operationalized as sub-24-hour data latency, 
governed KPI coverage, S&OP-anchored exception playbooks, and escalation routines experienced 
shallower margin declines for a given standard-deviation increase in feed costs. These patterns held 
when substituting basis for futures, altering margin construction, clustering errors, reweighting by size, 
and restricting to species sub-samples, indicating that the inference does not hinge on a single modeling 
choice or data slice. Conceptually, the findings recast BI from a reporting layer into an exposure-
management capability: rather than merely raising mean performance, maturity in pipelines and 
decision integration flattens the slope linking unavoidable shocks to economic outcomes, turning 
analytics into an operational hedge embedded in routine planning and control. Methodologically, the 
study demonstrates that auditable, survey-based constructs can be paired with market and operational 
indicators to yield interpretable, managerially portable models; keeping BI on its native 1–5 scale 
further enables threshold-style guidance (e.g., targeting “agree” or above on freshness and process 
integration) that leaders can translate into action. At the same time, the cross-sectional frame necessarily 
privileges breadth over dynamic causality, and self-reported organizational measures, even when 
reliable and validated, may understate or overstate true practice; we mitigated these constraints 
through reliability/validity checks, multiple-imputation sensitivity, and conservative diagnostics, but 
acknowledge that longitudinal telemetry of actions (hedge triggers, response times) would sharpen 
mechanism claims. Taken together, the evidence offers a coherent narrative for practitioners and 
researchers: market fundamentals and exogenous frictions set the stage, yet the realized impact on 
margins is materially mediated by BI capability that delivers timely, governed data into codified 
decisions. For executives, CISOs, and data architects, the implication is operational and immediate treat 
BI maturity as a controllable lever of resilience by investing in freshness, governed coverage, and 
process-level integration; for scholars, the implication is theoretical model BI as a shock-response 
architecture measurable by its ability to reduce outcome sensitivities to external drivers. 
RECOMMENDATIONS 
Translating these findings into action, we recommend treating business intelligence (BI) as a first-class 

exposure-control system not a reporting add-on by institutionalizing a small set of non-negotiables that 

link data freshness, governed coverage, and decision integration to concrete playbooks. First, establish 

a ≤24-hour data freshness SLA for the core risk signals (feed bundle, futures and basis, export orders, 

weather anomalies, disease alerts, and plant energy intensity). Enforce this with observable pipeline 

health checks, data-quality contracts (valid ranges, unit checks, identity tests like spot–futures = basis), 

and lineage that makes every KPI auditable back to source. Second, standardize a KPI cockpit aligned 
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to margin protection: (i) Margin-at-Risk (MaR) = price index − (feed+energy bundles) with species-

specific ration weights; (ii) Feed Exposure (1–5 risk gauge derived from z-score bands) that directly 

drives procurement coverage; (iii) Local Basis Monitor with alert bands for widening/narrowing; (iv) 

Weather & Disease Early-Warning (degree-day and outbreak composites with regional mapping); and (v) 

Energy-Intensity per Unit Output to quantify conversion-cost sensitivity. Third, wire these KPIs into 

S&OP-anchored playbooks with explicit owner, trigger, timer, escalation: for example, “If Feed Exposure 

≥4 and basis widens beyond the 75th percentile for seven days, procurement increases coverage by X%; 

if Weather EWI in heat-stress regions ≥3, operations advances placement adjustments and cooling 

scheduling within 48 hours.” Fourth, elevate decision-process integration by embedding alerts in work 

management tools (not just dashboards), requiring acknowledgement and completion codes, and 

reviewing exceptions in a weekly control meeting chaired jointly by Finance, Operations, and 

Procurement. Fifth, set a BI maturity target of ≥4.0 (‘agree’) on the 1–5 Likert composite within two 

quarters, focusing improvement on freshness/coverage and decision integration first (they delivered the 

strongest performance lift), while continuing to raise governance/lineage to cement auditability and trust. 

Sixth, operationalize basis-aware hedging: design coverage rules that pair futures with local basis 

tactics (e.g., cash contracts, location spreads) so that hedge effectiveness reflects the price-formation 

reality your plants face; publish a one-page basis playbook per region with historical bands, current 

percentile, and approved actions. Seventh, close the loop on plant utilities risk by adding energy 

telemetry (steam, refrigeration) to the model layer, implementing heat-recovery or load-shifting where 

MaR sensitivity to energy exceeds a documented threshold, and negotiating utility contracts with BI-

backed volume/peak clauses. Eighth, institutionalize post-event retrospectives: when feed spikes, 

disease events, or weather shocks occur, capture the timestamps from alert → action → outcome; 

compute realized slope changes (Δ margin per 1-SD feed move) and update thresholds, owners, and 

timers accordingly turning every shock into a learning cycle. Ninth, manage human factors: prevent 

alert fatigue with tiered severities, cap simultaneous alerts, and require a written rationale to override 

a red-band trigger. Tenth, extend data partnerships with suppliers and buyers to share minimal, high-

value indicators (lead times, cancellations, export booking pace) under clear data-sharing agreements; 

expose these as external features in MaR and volume forecasts. Finally, make leadership accountability 

explicit: tie a portion of executive and plant bonuses to measured BI maturity gains (Likert composite), 

MaR improvement, and compliance with playbooks. In sum, resource your BI program as a resiliency 

engine whose success is judged by shallower margin losses when shocks hit, not by dashboard counts 

move from analytics as insight to analytics as institutionalized action. 
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